This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fparlem3 | |- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coiun | |- ( `' ( 1st |` ( _V X. _V ) ) o. U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) = U_ x e. A ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
|
| 2 | inss1 | |- ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ dom F |
|
| 3 | fndm | |- ( F Fn A -> dom F = A ) |
|
| 4 | 2 3 | sseqtrid | |- ( F Fn A -> ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ A ) |
| 5 | dfco2a | |- ( ( dom F i^i ran ( 1st |` ( _V X. _V ) ) ) C_ A -> ( F o. ( 1st |` ( _V X. _V ) ) ) = U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
|
| 6 | 4 5 | syl | |- ( F Fn A -> ( F o. ( 1st |` ( _V X. _V ) ) ) = U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
| 7 | 6 | coeq2d | |- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. U_ x e. A ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
| 8 | inss1 | |- ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ dom ( { ( F ` x ) } X. ( { x } X. _V ) ) |
|
| 9 | dmxpss | |- dom ( { ( F ` x ) } X. ( { x } X. _V ) ) C_ { ( F ` x ) } |
|
| 10 | 8 9 | sstri | |- ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ { ( F ` x ) } |
| 11 | dfco2a | |- ( ( dom ( { ( F ` x ) } X. ( { x } X. _V ) ) i^i ran ( 1st |` ( _V X. _V ) ) ) C_ { ( F ` x ) } -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) |
| 13 | fvex | |- ( F ` x ) e. _V |
|
| 14 | fparlem1 | |- ( `' ( 1st |` ( _V X. _V ) ) " { y } ) = ( { y } X. _V ) |
|
| 15 | sneq | |- ( y = ( F ` x ) -> { y } = { ( F ` x ) } ) |
|
| 16 | 15 | xpeq1d | |- ( y = ( F ` x ) -> ( { y } X. _V ) = ( { ( F ` x ) } X. _V ) ) |
| 17 | 14 16 | eqtrid | |- ( y = ( F ` x ) -> ( `' ( 1st |` ( _V X. _V ) ) " { y } ) = ( { ( F ` x ) } X. _V ) ) |
| 18 | 15 | imaeq2d | |- ( y = ( F ` x ) -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) = ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) ) |
| 19 | df-ima | |- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) = ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) |
|
| 20 | ssid | |- { ( F ` x ) } C_ { ( F ` x ) } |
|
| 21 | xpssres | |- ( { ( F ` x ) } C_ { ( F ` x ) } -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) ) |
|
| 22 | 20 21 | ax-mp | |- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) |
| 23 | 22 | rneqi | |- ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ran ( { ( F ` x ) } X. ( { x } X. _V ) ) |
| 24 | 13 | snnz | |- { ( F ` x ) } =/= (/) |
| 25 | rnxp | |- ( { ( F ` x ) } =/= (/) -> ran ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( { x } X. _V ) ) |
|
| 26 | 24 25 | ax-mp | |- ran ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( { x } X. _V ) |
| 27 | 23 26 | eqtri | |- ran ( ( { ( F ` x ) } X. ( { x } X. _V ) ) |` { ( F ` x ) } ) = ( { x } X. _V ) |
| 28 | 19 27 | eqtri | |- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { ( F ` x ) } ) = ( { x } X. _V ) |
| 29 | 18 28 | eqtrdi | |- ( y = ( F ` x ) -> ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) = ( { x } X. _V ) ) |
| 30 | 17 29 | xpeq12d | |- ( y = ( F ` x ) -> ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) ) |
| 31 | 13 30 | iunxsn | |- U_ y e. { ( F ` x ) } ( ( `' ( 1st |` ( _V X. _V ) ) " { y } ) X. ( ( { ( F ` x ) } X. ( { x } X. _V ) ) " { y } ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
| 32 | 12 31 | eqtri | |- ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
| 33 | 32 | cnveqi | |- `' ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = `' ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) |
| 34 | cnvco | |- `' ( ( { ( F ` x ) } X. ( { x } X. _V ) ) o. ( 1st |` ( _V X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) |
|
| 35 | cnvxp | |- `' ( ( { ( F ` x ) } X. _V ) X. ( { x } X. _V ) ) = ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) |
|
| 36 | 33 34 35 | 3eqtr3i | |- ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) = ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) |
| 37 | fparlem1 | |- ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |
|
| 38 | 37 | xpeq2i | |- ( { ( F ` x ) } X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( { ( F ` x ) } X. ( { x } X. _V ) ) |
| 39 | fnsnfv | |- ( ( F Fn A /\ x e. A ) -> { ( F ` x ) } = ( F " { x } ) ) |
|
| 40 | 39 | xpeq1d | |- ( ( F Fn A /\ x e. A ) -> ( { ( F ` x ) } X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
| 41 | 38 40 | eqtr3id | |- ( ( F Fn A /\ x e. A ) -> ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
| 42 | 41 | cnveqd | |- ( ( F Fn A /\ x e. A ) -> `' ( { ( F ` x ) } X. ( { x } X. _V ) ) = `' ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) ) |
| 43 | cnvxp | |- `' ( ( F " { x } ) X. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) |
|
| 44 | 42 43 | eqtrdi | |- ( ( F Fn A /\ x e. A ) -> `' ( { ( F ` x ) } X. ( { x } X. _V ) ) = ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) |
| 45 | 44 | coeq2d | |- ( ( F Fn A /\ x e. A ) -> ( `' ( 1st |` ( _V X. _V ) ) o. `' ( { ( F ` x ) } X. ( { x } X. _V ) ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
| 46 | 36 45 | eqtr3id | |- ( ( F Fn A /\ x e. A ) -> ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) = ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
| 47 | 46 | iuneq2dv | |- ( F Fn A -> U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) = U_ x e. A ( `' ( 1st |` ( _V X. _V ) ) o. ( ( `' ( 1st |` ( _V X. _V ) ) " { x } ) X. ( F " { x } ) ) ) ) |
| 48 | 1 7 47 | 3eqtr4a | |- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) ) |