This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fparlem1 | |- ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvres | |- ( y e. ( _V X. _V ) -> ( ( 1st |` ( _V X. _V ) ) ` y ) = ( 1st ` y ) ) |
|
| 2 | 1 | eqeq1d | |- ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( 1st ` y ) = x ) ) |
| 3 | vex | |- x e. _V |
|
| 4 | 3 | elsn2 | |- ( ( 1st ` y ) e. { x } <-> ( 1st ` y ) = x ) |
| 5 | fvex | |- ( 2nd ` y ) e. _V |
|
| 6 | 5 | biantru | |- ( ( 1st ` y ) e. { x } <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) |
| 7 | 4 6 | bitr3i | |- ( ( 1st ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) |
| 8 | 2 7 | bitrdi | |- ( y e. ( _V X. _V ) -> ( ( ( 1st |` ( _V X. _V ) ) ` y ) = x <-> ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
| 9 | 8 | pm5.32i | |- ( ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
| 10 | f1stres | |- ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V |
|
| 11 | ffn | |- ( ( 1st |` ( _V X. _V ) ) : ( _V X. _V ) --> _V -> ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) ) |
|
| 12 | fniniseg | |- ( ( 1st |` ( _V X. _V ) ) Fn ( _V X. _V ) -> ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) ) |
|
| 13 | 10 11 12 | mp2b | |- ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st |` ( _V X. _V ) ) ` y ) = x ) ) |
| 14 | elxp7 | |- ( y e. ( { x } X. _V ) <-> ( y e. ( _V X. _V ) /\ ( ( 1st ` y ) e. { x } /\ ( 2nd ` y ) e. _V ) ) ) |
|
| 15 | 9 13 14 | 3bitr4i | |- ( y e. ( `' ( 1st |` ( _V X. _V ) ) " { x } ) <-> y e. ( { x } X. _V ) ) |
| 16 | 15 | eqriv | |- ( `' ( 1st |` ( _V X. _V ) ) " { x } ) = ( { x } X. _V ) |