This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpar . (Contributed by NM, 22-Dec-2008) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fparlem4 | |- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coiun | |- ( `' ( 2nd |` ( _V X. _V ) ) o. U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) = U_ y e. B ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
|
| 2 | inss1 | |- ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ dom G |
|
| 3 | fndm | |- ( G Fn B -> dom G = B ) |
|
| 4 | 2 3 | sseqtrid | |- ( G Fn B -> ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ B ) |
| 5 | dfco2a | |- ( ( dom G i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ B -> ( G o. ( 2nd |` ( _V X. _V ) ) ) = U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
|
| 6 | 4 5 | syl | |- ( G Fn B -> ( G o. ( 2nd |` ( _V X. _V ) ) ) = U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 7 | 6 | coeq2d | |- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. U_ y e. B ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 8 | inss1 | |- ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ dom ( { ( G ` y ) } X. ( _V X. { y } ) ) |
|
| 9 | dmxpss | |- dom ( { ( G ` y ) } X. ( _V X. { y } ) ) C_ { ( G ` y ) } |
|
| 10 | 8 9 | sstri | |- ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ { ( G ` y ) } |
| 11 | dfco2a | |- ( ( dom ( { ( G ` y ) } X. ( _V X. { y } ) ) i^i ran ( 2nd |` ( _V X. _V ) ) ) C_ { ( G ` y ) } -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) |
| 13 | fvex | |- ( G ` y ) e. _V |
|
| 14 | fparlem2 | |- ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) = ( _V X. { x } ) |
|
| 15 | sneq | |- ( x = ( G ` y ) -> { x } = { ( G ` y ) } ) |
|
| 16 | 15 | xpeq2d | |- ( x = ( G ` y ) -> ( _V X. { x } ) = ( _V X. { ( G ` y ) } ) ) |
| 17 | 14 16 | eqtrid | |- ( x = ( G ` y ) -> ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) = ( _V X. { ( G ` y ) } ) ) |
| 18 | 15 | imaeq2d | |- ( x = ( G ` y ) -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) = ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) ) |
| 19 | df-ima | |- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) = ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) |
|
| 20 | ssid | |- { ( G ` y ) } C_ { ( G ` y ) } |
|
| 21 | xpssres | |- ( { ( G ` y ) } C_ { ( G ` y ) } -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) ) |
|
| 22 | 20 21 | ax-mp | |- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 23 | 22 | rneqi | |- ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ran ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 24 | 13 | snnz | |- { ( G ` y ) } =/= (/) |
| 25 | rnxp | |- ( { ( G ` y ) } =/= (/) -> ran ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( _V X. { y } ) ) |
|
| 26 | 24 25 | ax-mp | |- ran ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( _V X. { y } ) |
| 27 | 23 26 | eqtri | |- ran ( ( { ( G ` y ) } X. ( _V X. { y } ) ) |` { ( G ` y ) } ) = ( _V X. { y } ) |
| 28 | 19 27 | eqtri | |- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { ( G ` y ) } ) = ( _V X. { y } ) |
| 29 | 18 28 | eqtrdi | |- ( x = ( G ` y ) -> ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) = ( _V X. { y } ) ) |
| 30 | 17 29 | xpeq12d | |- ( x = ( G ` y ) -> ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) ) |
| 31 | 13 30 | iunxsn | |- U_ x e. { ( G ` y ) } ( ( `' ( 2nd |` ( _V X. _V ) ) " { x } ) X. ( ( { ( G ` y ) } X. ( _V X. { y } ) ) " { x } ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 32 | 12 31 | eqtri | |- ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 33 | 32 | cnveqi | |- `' ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = `' ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) |
| 34 | cnvco | |- `' ( ( { ( G ` y ) } X. ( _V X. { y } ) ) o. ( 2nd |` ( _V X. _V ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) |
|
| 35 | cnvxp | |- `' ( ( _V X. { ( G ` y ) } ) X. ( _V X. { y } ) ) = ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) |
|
| 36 | 33 34 35 | 3eqtr3i | |- ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) = ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) |
| 37 | fparlem2 | |- ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) = ( _V X. { y } ) |
|
| 38 | 37 | xpeq2i | |- ( { ( G ` y ) } X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( { ( G ` y ) } X. ( _V X. { y } ) ) |
| 39 | fnsnfv | |- ( ( G Fn B /\ y e. B ) -> { ( G ` y ) } = ( G " { y } ) ) |
|
| 40 | 39 | xpeq1d | |- ( ( G Fn B /\ y e. B ) -> ( { ( G ` y ) } X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 41 | 38 40 | eqtr3id | |- ( ( G Fn B /\ y e. B ) -> ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 42 | 41 | cnveqd | |- ( ( G Fn B /\ y e. B ) -> `' ( { ( G ` y ) } X. ( _V X. { y } ) ) = `' ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) ) |
| 43 | cnvxp | |- `' ( ( G " { y } ) X. ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) |
|
| 44 | 42 43 | eqtrdi | |- ( ( G Fn B /\ y e. B ) -> `' ( { ( G ` y ) } X. ( _V X. { y } ) ) = ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) |
| 45 | 44 | coeq2d | |- ( ( G Fn B /\ y e. B ) -> ( `' ( 2nd |` ( _V X. _V ) ) o. `' ( { ( G ` y ) } X. ( _V X. { y } ) ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 46 | 36 45 | eqtr3id | |- ( ( G Fn B /\ y e. B ) -> ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) = ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 47 | 46 | iuneq2dv | |- ( G Fn B -> U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) = U_ y e. B ( `' ( 2nd |` ( _V X. _V ) ) o. ( ( `' ( 2nd |` ( _V X. _V ) ) " { y } ) X. ( G " { y } ) ) ) ) |
| 48 | 1 7 47 | 3eqtr4a | |- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |