This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of dfco2 , where C can have any value between dom A i^i ran B and _V . (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfco2a | |- ( ( dom A i^i ran B ) C_ C -> ( A o. B ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfco2 | |- ( A o. B ) = U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) |
|
| 2 | vex | |- z e. _V |
|
| 3 | 2 | eliniseg | |- ( x e. _V -> ( z e. ( `' B " { x } ) <-> z B x ) ) |
| 4 | 3 | elv | |- ( z e. ( `' B " { x } ) <-> z B x ) |
| 5 | vex | |- x e. _V |
|
| 6 | 2 5 | brelrn | |- ( z B x -> x e. ran B ) |
| 7 | 4 6 | sylbi | |- ( z e. ( `' B " { x } ) -> x e. ran B ) |
| 8 | vex | |- w e. _V |
|
| 9 | 5 8 | elimasn | |- ( w e. ( A " { x } ) <-> <. x , w >. e. A ) |
| 10 | 5 8 | opeldm | |- ( <. x , w >. e. A -> x e. dom A ) |
| 11 | 9 10 | sylbi | |- ( w e. ( A " { x } ) -> x e. dom A ) |
| 12 | 7 11 | anim12ci | |- ( ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) -> ( x e. dom A /\ x e. ran B ) ) |
| 13 | 12 | adantl | |- ( ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) |
| 14 | 13 | exlimivv | |- ( E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) -> ( x e. dom A /\ x e. ran B ) ) |
| 15 | elxp | |- ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. z E. w ( y = <. z , w >. /\ ( z e. ( `' B " { x } ) /\ w e. ( A " { x } ) ) ) ) |
|
| 16 | elin | |- ( x e. ( dom A i^i ran B ) <-> ( x e. dom A /\ x e. ran B ) ) |
|
| 17 | 14 15 16 | 3imtr4i | |- ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. ( dom A i^i ran B ) ) |
| 18 | ssel | |- ( ( dom A i^i ran B ) C_ C -> ( x e. ( dom A i^i ran B ) -> x e. C ) ) |
|
| 19 | 17 18 | syl5 | |- ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) -> x e. C ) ) |
| 20 | 19 | pm4.71rd | |- ( ( dom A i^i ran B ) C_ C -> ( y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) |
| 21 | 20 | exbidv | |- ( ( dom A i^i ran B ) C_ C -> ( E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) ) |
| 22 | rexv | |- ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 23 | df-rex | |- ( E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x ( x e. C /\ y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
|
| 24 | 21 22 23 | 3bitr4g | |- ( ( dom A i^i ran B ) C_ C -> ( E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
| 25 | eliun | |- ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. _V y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 26 | eliun | |- ( y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) <-> E. x e. C y e. ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
|
| 27 | 24 25 26 | 3bitr4g | |- ( ( dom A i^i ran B ) C_ C -> ( y e. U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) <-> y e. U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) ) |
| 28 | 27 | eqrdv | |- ( ( dom A i^i ran B ) C_ C -> U_ x e. _V ( ( `' B " { x } ) X. ( A " { x } ) ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |
| 29 | 1 28 | eqtrid | |- ( ( dom A i^i ran B ) C_ C -> ( A o. B ) = U_ x e. C ( ( `' B " { x } ) X. ( A " { x } ) ) ) |