This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as ( x e. ( 0 [,) +oo ) , y e. RR |-> ( ( sqrtx ) + ( siny ) ) ) , see also ex-fpar . (Contributed by NM, 17-Sep-2007) (Proof shortened by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fpar.1 | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| Assertion | fpar | |- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpar.1 | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 2 | fparlem3 | |- ( F Fn A -> ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) = U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) ) |
|
| 3 | fparlem4 | |- ( G Fn B -> ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) = U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
|
| 4 | 2 3 | ineqan12d | |- ( ( F Fn A /\ G Fn B ) -> ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) ) |
| 5 | opex | |- <. ( F ` x ) , ( G ` y ) >. e. _V |
|
| 6 | 5 | dfmpo | |- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = U_ x e. A U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
| 7 | inxp | |- ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = ( ( ( { x } X. _V ) i^i ( _V X. { y } ) ) X. ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) ) |
|
| 8 | inxp | |- ( ( { x } X. _V ) i^i ( _V X. { y } ) ) = ( ( { x } i^i _V ) X. ( _V i^i { y } ) ) |
|
| 9 | inv1 | |- ( { x } i^i _V ) = { x } |
|
| 10 | incom | |- ( _V i^i { y } ) = ( { y } i^i _V ) |
|
| 11 | inv1 | |- ( { y } i^i _V ) = { y } |
|
| 12 | 10 11 | eqtri | |- ( _V i^i { y } ) = { y } |
| 13 | 9 12 | xpeq12i | |- ( ( { x } i^i _V ) X. ( _V i^i { y } ) ) = ( { x } X. { y } ) |
| 14 | vex | |- x e. _V |
|
| 15 | vex | |- y e. _V |
|
| 16 | 14 15 | xpsn | |- ( { x } X. { y } ) = { <. x , y >. } |
| 17 | 8 13 16 | 3eqtri | |- ( ( { x } X. _V ) i^i ( _V X. { y } ) ) = { <. x , y >. } |
| 18 | inxp | |- ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) = ( ( { ( F ` x ) } i^i _V ) X. ( _V i^i { ( G ` y ) } ) ) |
|
| 19 | inv1 | |- ( { ( F ` x ) } i^i _V ) = { ( F ` x ) } |
|
| 20 | incom | |- ( _V i^i { ( G ` y ) } ) = ( { ( G ` y ) } i^i _V ) |
|
| 21 | inv1 | |- ( { ( G ` y ) } i^i _V ) = { ( G ` y ) } |
|
| 22 | 20 21 | eqtri | |- ( _V i^i { ( G ` y ) } ) = { ( G ` y ) } |
| 23 | 19 22 | xpeq12i | |- ( ( { ( F ` x ) } i^i _V ) X. ( _V i^i { ( G ` y ) } ) ) = ( { ( F ` x ) } X. { ( G ` y ) } ) |
| 24 | fvex | |- ( F ` x ) e. _V |
|
| 25 | fvex | |- ( G ` y ) e. _V |
|
| 26 | 24 25 | xpsn | |- ( { ( F ` x ) } X. { ( G ` y ) } ) = { <. ( F ` x ) , ( G ` y ) >. } |
| 27 | 18 23 26 | 3eqtri | |- ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) = { <. ( F ` x ) , ( G ` y ) >. } |
| 28 | 17 27 | xpeq12i | |- ( ( ( { x } X. _V ) i^i ( _V X. { y } ) ) X. ( ( { ( F ` x ) } X. _V ) i^i ( _V X. { ( G ` y ) } ) ) ) = ( { <. x , y >. } X. { <. ( F ` x ) , ( G ` y ) >. } ) |
| 29 | opex | |- <. x , y >. e. _V |
|
| 30 | 29 5 | xpsn | |- ( { <. x , y >. } X. { <. ( F ` x ) , ( G ` y ) >. } ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
| 31 | 7 28 30 | 3eqtri | |- ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
| 32 | 31 | a1i | |- ( y e. B -> ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } ) |
| 33 | 32 | iuneq2i | |- U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
| 34 | 33 | a1i | |- ( x e. A -> U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } ) |
| 35 | 34 | iuneq2i | |- U_ x e. A U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = U_ x e. A U_ y e. B { <. <. x , y >. , <. ( F ` x ) , ( G ` y ) >. >. } |
| 36 | 2iunin | |- U_ x e. A U_ y e. B ( ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
|
| 37 | 6 35 36 | 3eqtr2i | |- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = ( U_ x e. A ( ( { x } X. _V ) X. ( { ( F ` x ) } X. _V ) ) i^i U_ y e. B ( ( _V X. { y } ) X. ( _V X. { ( G ` y ) } ) ) ) |
| 38 | 4 1 37 | 3eqtr4g | |- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) |