This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of TakeutiZaring p. 93. (Contributed by NM, 29-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomb | |- ( ( A =/= (/) /\ E. f f : A -onto-> B ) <-> ( (/) ~< B /\ B ~<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | |- ( f : A -onto-> B -> f : A --> B ) |
|
| 2 | 1 | fdmd | |- ( f : A -onto-> B -> dom f = A ) |
| 3 | 2 | eqeq1d | |- ( f : A -onto-> B -> ( dom f = (/) <-> A = (/) ) ) |
| 4 | dm0rn0 | |- ( dom f = (/) <-> ran f = (/) ) |
|
| 5 | forn | |- ( f : A -onto-> B -> ran f = B ) |
|
| 6 | 5 | eqeq1d | |- ( f : A -onto-> B -> ( ran f = (/) <-> B = (/) ) ) |
| 7 | 4 6 | bitrid | |- ( f : A -onto-> B -> ( dom f = (/) <-> B = (/) ) ) |
| 8 | 3 7 | bitr3d | |- ( f : A -onto-> B -> ( A = (/) <-> B = (/) ) ) |
| 9 | 8 | necon3bid | |- ( f : A -onto-> B -> ( A =/= (/) <-> B =/= (/) ) ) |
| 10 | 9 | biimpac | |- ( ( A =/= (/) /\ f : A -onto-> B ) -> B =/= (/) ) |
| 11 | vex | |- f e. _V |
|
| 12 | 11 | dmex | |- dom f e. _V |
| 13 | 2 12 | eqeltrrdi | |- ( f : A -onto-> B -> A e. _V ) |
| 14 | focdmex | |- ( A e. _V -> ( f : A -onto-> B -> B e. _V ) ) |
|
| 15 | 13 14 | mpcom | |- ( f : A -onto-> B -> B e. _V ) |
| 16 | 0sdomg | |- ( B e. _V -> ( (/) ~< B <-> B =/= (/) ) ) |
|
| 17 | 15 16 | syl | |- ( f : A -onto-> B -> ( (/) ~< B <-> B =/= (/) ) ) |
| 18 | 17 | adantl | |- ( ( A =/= (/) /\ f : A -onto-> B ) -> ( (/) ~< B <-> B =/= (/) ) ) |
| 19 | 10 18 | mpbird | |- ( ( A =/= (/) /\ f : A -onto-> B ) -> (/) ~< B ) |
| 20 | 19 | ex | |- ( A =/= (/) -> ( f : A -onto-> B -> (/) ~< B ) ) |
| 21 | fodomg | |- ( A e. _V -> ( f : A -onto-> B -> B ~<_ A ) ) |
|
| 22 | 13 21 | mpcom | |- ( f : A -onto-> B -> B ~<_ A ) |
| 23 | 20 22 | jca2 | |- ( A =/= (/) -> ( f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) |
| 24 | 23 | exlimdv | |- ( A =/= (/) -> ( E. f f : A -onto-> B -> ( (/) ~< B /\ B ~<_ A ) ) ) |
| 25 | 24 | imp | |- ( ( A =/= (/) /\ E. f f : A -onto-> B ) -> ( (/) ~< B /\ B ~<_ A ) ) |
| 26 | sdomdomtr | |- ( ( (/) ~< B /\ B ~<_ A ) -> (/) ~< A ) |
|
| 27 | reldom | |- Rel ~<_ |
|
| 28 | 27 | brrelex2i | |- ( B ~<_ A -> A e. _V ) |
| 29 | 28 | adantl | |- ( ( (/) ~< B /\ B ~<_ A ) -> A e. _V ) |
| 30 | 0sdomg | |- ( A e. _V -> ( (/) ~< A <-> A =/= (/) ) ) |
|
| 31 | 29 30 | syl | |- ( ( (/) ~< B /\ B ~<_ A ) -> ( (/) ~< A <-> A =/= (/) ) ) |
| 32 | 26 31 | mpbid | |- ( ( (/) ~< B /\ B ~<_ A ) -> A =/= (/) ) |
| 33 | fodomr | |- ( ( (/) ~< B /\ B ~<_ A ) -> E. f f : A -onto-> B ) |
|
| 34 | 32 33 | jca | |- ( ( (/) ~< B /\ B ~<_ A ) -> ( A =/= (/) /\ E. f f : A -onto-> B ) ) |
| 35 | 25 34 | impbii | |- ( ( A =/= (/) /\ E. f f : A -onto-> B ) <-> ( (/) ~< B /\ B ~<_ A ) ) |