This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto function implies dominance of domain over range. Lemma 10.20 of Kunen p. 30. This theorem uses the axiom of choice ac7g . The axiom of choice is not needed for finite sets, see fodomfi . See also fodomnum . (Contributed by NM, 23-Jul-2004) (Proof shortened by BJ, 20-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomg | |- ( A e. V -> ( F : A -onto-> B -> B ~<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numth3 | |- ( A e. V -> A e. dom card ) |
|
| 2 | fodomnum | |- ( A e. dom card -> ( F : A -onto-> B -> B ~<_ A ) ) |
|
| 3 | 1 2 | syl | |- ( A e. V -> ( F : A -onto-> B -> B ~<_ A ) ) |