This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an onto mapping and dominance for a nonempty set. Proposition 10.35 of TakeutiZaring p. 93. (Contributed by NM, 29-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fodomb | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ↔ ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 2 | 1 | fdmd | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → dom 𝑓 = 𝐴 ) |
| 3 | 2 | eqeq1d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( dom 𝑓 = ∅ ↔ 𝐴 = ∅ ) ) |
| 4 | dm0rn0 | ⊢ ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ ) | |
| 5 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( ran 𝑓 = ∅ ↔ 𝐵 = ∅ ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( dom 𝑓 = ∅ ↔ 𝐵 = ∅ ) ) |
| 8 | 3 7 | bitr3d | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝐴 = ∅ ↔ 𝐵 = ∅ ) ) |
| 9 | 8 | necon3bid | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
| 10 | 9 | biimpac | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝑓 : 𝐴 –onto→ 𝐵 ) → 𝐵 ≠ ∅ ) |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | 11 | dmex | ⊢ dom 𝑓 ∈ V |
| 13 | 2 12 | eqeltrrdi | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐴 ∈ V ) |
| 14 | focdmex | ⊢ ( 𝐴 ∈ V → ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) | |
| 15 | 13 14 | mpcom | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) |
| 16 | 0sdomg | ⊢ ( 𝐵 ∈ V → ( ∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅ ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( ∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 18 | 17 | adantl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝑓 : 𝐴 –onto→ 𝐵 ) → ( ∅ ≺ 𝐵 ↔ 𝐵 ≠ ∅ ) ) |
| 19 | 10 18 | mpbird | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝑓 : 𝐴 –onto→ 𝐵 ) → ∅ ≺ 𝐵 ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 𝐴 –onto→ 𝐵 → ∅ ≺ 𝐵 ) ) |
| 21 | fodomg | ⊢ ( 𝐴 ∈ V → ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) ) | |
| 22 | 13 21 | mpcom | ⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → 𝐵 ≼ 𝐴 ) |
| 23 | 20 22 | jca2 | ⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 𝐴 –onto→ 𝐵 → ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) ) |
| 24 | 23 | exlimdv | ⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 → ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) → ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) |
| 26 | sdomdomtr | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ∅ ≺ 𝐴 ) | |
| 27 | reldom | ⊢ Rel ≼ | |
| 28 | 27 | brrelex2i | ⊢ ( 𝐵 ≼ 𝐴 → 𝐴 ∈ V ) |
| 29 | 28 | adantl | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ∈ V ) |
| 30 | 0sdomg | ⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) | |
| 31 | 29 30 | syl | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 32 | 26 31 | mpbid | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → 𝐴 ≠ ∅ ) |
| 33 | fodomr | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) | |
| 34 | 32 33 | jca | ⊢ ( ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) → ( 𝐴 ≠ ∅ ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ) |
| 35 | 25 34 | impbii | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∃ 𝑓 𝑓 : 𝐴 –onto→ 𝐵 ) ↔ ( ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴 ) ) |