This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlasuc0 | |- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla | |- Fmla = ( n e. suc _om |-> dom ( ( (/) Sat (/) ) ` n ) ) |
|
| 2 | fveq2 | |- ( n = suc N -> ( ( (/) Sat (/) ) ` n ) = ( ( (/) Sat (/) ) ` suc N ) ) |
|
| 3 | 2 | dmeqd | |- ( n = suc N -> dom ( ( (/) Sat (/) ) ` n ) = dom ( ( (/) Sat (/) ) ` suc N ) ) |
| 4 | omsucelsucb | |- ( N e. _om <-> suc N e. suc _om ) |
|
| 5 | 4 | biimpi | |- ( N e. _om -> suc N e. suc _om ) |
| 6 | fvex | |- ( ( (/) Sat (/) ) ` suc N ) e. _V |
|
| 7 | 6 | dmex | |- dom ( ( (/) Sat (/) ) ` suc N ) e. _V |
| 8 | 7 | a1i | |- ( N e. _om -> dom ( ( (/) Sat (/) ) ` suc N ) e. _V ) |
| 9 | 1 3 5 8 | fvmptd3 | |- ( N e. _om -> ( Fmla ` suc N ) = dom ( ( (/) Sat (/) ) ` suc N ) ) |
| 10 | satf0sucom | |- ( suc N e. suc _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
|
| 11 | 5 10 | syl | |- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) ) |
| 12 | nnon | |- ( N e. _om -> N e. On ) |
|
| 13 | rdgsuc | |- ( N e. On -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
|
| 14 | 12 13 | syl | |- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 15 | 11 14 | eqtrd | |- ( N e. _om -> ( ( (/) Sat (/) ) ` suc N ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 16 | 15 | dmeqd | |- ( N e. _om -> dom ( ( (/) Sat (/) ) ` suc N ) = dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) ) |
| 17 | elelsuc | |- ( N e. _om -> N e. suc _om ) |
|
| 18 | satf0sucom | |- ( N e. suc _om -> ( ( (/) Sat (/) ) ` N ) = ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) |
|
| 19 | 18 | eqcomd | |- ( N e. suc _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( ( (/) Sat (/) ) ` N ) ) |
| 20 | 17 19 | syl | |- ( N e. _om -> ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) = ( ( (/) Sat (/) ) ` N ) ) |
| 21 | 20 | fveq2d | |- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` N ) ) ) |
| 22 | eqidd | |- ( N e. _om -> ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) = ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
|
| 23 | id | |- ( f = ( ( (/) Sat (/) ) ` N ) -> f = ( ( (/) Sat (/) ) ` N ) ) |
|
| 24 | rexeq | |- ( f = ( ( (/) Sat (/) ) ` N ) -> ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 25 | 24 | orbi1d | |- ( f = ( ( (/) Sat (/) ) ` N ) -> ( ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 26 | 25 | rexeqbi1dv | |- ( f = ( ( (/) Sat (/) ) ` N ) -> ( E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 27 | 26 | anbi2d | |- ( f = ( ( (/) Sat (/) ) ` N ) -> ( ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 28 | 27 | opabbidv | |- ( f = ( ( (/) Sat (/) ) ` N ) -> { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 29 | 23 28 | uneq12d | |- ( f = ( ( (/) Sat (/) ) ` N ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 30 | 29 | adantl | |- ( ( N e. _om /\ f = ( ( (/) Sat (/) ) ` N ) ) -> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 31 | fvex | |- ( ( (/) Sat (/) ) ` N ) e. _V |
|
| 32 | 31 | a1i | |- ( N e. _om -> ( ( (/) Sat (/) ) ` N ) e. _V ) |
| 33 | peano1 | |- (/) e. _om |
|
| 34 | eleq1 | |- ( y = (/) -> ( y e. _om <-> (/) e. _om ) ) |
|
| 35 | 33 34 | mpbiri | |- ( y = (/) -> y e. _om ) |
| 36 | 35 | adantr | |- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> y e. _om ) |
| 37 | 36 | pm4.71ri | |- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) ) |
| 38 | 37 | opabbii | |- { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } |
| 39 | omex | |- _om e. _V |
|
| 40 | id | |- ( _om e. _V -> _om e. _V ) |
|
| 41 | unab | |- ( { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } u. { x | E. i e. _om x = A.g i ( 1st ` u ) } ) = { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } |
|
| 42 | 31 | abrexex | |- { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } e. _V |
| 43 | 39 | abrexex | |- { x | E. i e. _om x = A.g i ( 1st ` u ) } e. _V |
| 44 | 42 43 | unex | |- ( { x | E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) } u. { x | E. i e. _om x = A.g i ( 1st ` u ) } ) e. _V |
| 45 | 41 44 | eqeltrri | |- { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V |
| 46 | 45 | a1i | |- ( ( ( _om e. _V /\ y e. _om ) /\ u e. ( ( (/) Sat (/) ) ` N ) ) -> { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 47 | 46 | ralrimiva | |- ( ( _om e. _V /\ y e. _om ) -> A. u e. ( ( (/) Sat (/) ) ` N ) { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 48 | abrexex2g | |- ( ( ( ( (/) Sat (/) ) ` N ) e. _V /\ A. u e. ( ( (/) Sat (/) ) ` N ) { x | ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) -> { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
|
| 49 | 31 47 48 | sylancr | |- ( ( _om e. _V /\ y e. _om ) -> { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } e. _V ) |
| 50 | 40 49 | opabex3rd | |- ( _om e. _V -> { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 51 | 39 50 | ax-mp | |- { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V |
| 52 | simpr | |- ( ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) -> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
|
| 53 | 52 | anim2i | |- ( ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) -> ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
| 54 | 53 | ssopab2i | |- { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } C_ { <. x , y >. | ( y e. _om /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
| 55 | 51 54 | ssexi | |- { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } e. _V |
| 56 | 55 | a1i | |- ( N e. _om -> { <. x , y >. | ( y e. _om /\ ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) } e. _V ) |
| 57 | 38 56 | eqeltrid | |- ( N e. _om -> { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) |
| 58 | unexg | |- ( ( ( ( (/) Sat (/) ) ` N ) e. _V /\ { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } e. _V ) -> ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
|
| 59 | 31 57 58 | sylancr | |- ( N e. _om -> ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) e. _V ) |
| 60 | 22 30 32 59 | fvmptd | |- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( ( (/) Sat (/) ) ` N ) ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 61 | 21 60 | eqtrd | |- ( N e. _om -> ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 62 | 61 | dmeqd | |- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = dom ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 63 | dmun | |- dom ( ( ( (/) Sat (/) ) ` N ) u. { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
|
| 64 | 62 63 | eqtrdi | |- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 65 | fmlafv | |- ( N e. suc _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
|
| 66 | 17 65 | syl | |- ( N e. _om -> ( Fmla ` N ) = dom ( ( (/) Sat (/) ) ` N ) ) |
| 67 | 66 | eqcomd | |- ( N e. _om -> dom ( ( (/) Sat (/) ) ` N ) = ( Fmla ` N ) ) |
| 68 | dmopab | |- dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } |
|
| 69 | 68 | a1i | |- ( N e. _om -> dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) |
| 70 | 0ex | |- (/) e. _V |
|
| 71 | 70 | isseti | |- E. y y = (/) |
| 72 | 19.41v | |- ( E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( E. y y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) ) |
|
| 73 | 71 72 | mpbiran | |- ( E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) |
| 74 | 73 | abbii | |- { x | E. y ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } |
| 75 | 69 74 | eqtrdi | |- ( N e. _om -> dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } = { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) |
| 76 | 67 75 | uneq12d | |- ( N e. _om -> ( dom ( ( (/) Sat (/) ) ` N ) u. dom { <. x , y >. | ( y = (/) /\ E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 77 | 64 76 | eqtrd | |- ( N e. _om -> dom ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ` ( rec ( ( f e. _V |-> ( f u. { <. x , y >. | ( y = (/) /\ E. u e. f ( E. v e. f x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) , { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ` N ) ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 78 | 9 16 77 | 3eqtrd | |- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( ( (/) Sat (/) ) ` N ) ( E. v e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |