This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an existentially restricted class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abrexex2g | |- ( ( A e. V /\ A. x e. A { y | ph } e. W ) -> { y | E. x e. A ph } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | |- F/ z E. x e. A ph |
|
| 2 | nfcv | |- F/_ y A |
|
| 3 | nfs1v | |- F/ y [ z / y ] ph |
|
| 4 | 2 3 | nfrexw | |- F/ y E. x e. A [ z / y ] ph |
| 5 | sbequ12 | |- ( y = z -> ( ph <-> [ z / y ] ph ) ) |
|
| 6 | 5 | rexbidv | |- ( y = z -> ( E. x e. A ph <-> E. x e. A [ z / y ] ph ) ) |
| 7 | 1 4 6 | cbvabw | |- { y | E. x e. A ph } = { z | E. x e. A [ z / y ] ph } |
| 8 | df-clab | |- ( z e. { y | ph } <-> [ z / y ] ph ) |
|
| 9 | 8 | rexbii | |- ( E. x e. A z e. { y | ph } <-> E. x e. A [ z / y ] ph ) |
| 10 | 9 | abbii | |- { z | E. x e. A z e. { y | ph } } = { z | E. x e. A [ z / y ] ph } |
| 11 | 7 10 | eqtr4i | |- { y | E. x e. A ph } = { z | E. x e. A z e. { y | ph } } |
| 12 | df-iun | |- U_ x e. A { y | ph } = { z | E. x e. A z e. { y | ph } } |
|
| 13 | iunexg | |- ( ( A e. V /\ A. x e. A { y | ph } e. W ) -> U_ x e. A { y | ph } e. _V ) |
|
| 14 | 12 13 | eqeltrrid | |- ( ( A e. V /\ A. x e. A { y | ph } e. W ) -> { z | E. x e. A z e. { y | ph } } e. _V ) |
| 15 | 11 14 | eqeltrid | |- ( ( A e. V /\ A. x e. A { y | ph } e. W ) -> { y | E. x e. A ph } e. _V ) |