This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The valid Godel formulas of height ( N + 1 ) . (Contributed by AV, 18-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlasuc0 | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fmla | ⊢ Fmla = ( 𝑛 ∈ suc ω ↦ dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) ) | |
| 2 | fveq2 | ⊢ ( 𝑛 = suc 𝑁 → ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑛 = suc 𝑁 → dom ( ( ∅ Sat ∅ ) ‘ 𝑛 ) = dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ) |
| 4 | omsucelsucb | ⊢ ( 𝑁 ∈ ω ↔ suc 𝑁 ∈ suc ω ) | |
| 5 | 4 | biimpi | ⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ suc ω ) |
| 6 | fvex | ⊢ ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V | |
| 7 | 6 | dmex | ⊢ dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V |
| 8 | 7 | a1i | ⊢ ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ∈ V ) |
| 9 | 1 3 5 8 | fvmptd3 | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) ) |
| 10 | satf0sucom | ⊢ ( suc 𝑁 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) ) | |
| 11 | 5 10 | syl | ⊢ ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) ) |
| 12 | nnon | ⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) | |
| 13 | rdgsuc | ⊢ ( 𝑁 ∈ On → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝑁 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) ) |
| 15 | 11 14 | eqtrd | ⊢ ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) ) |
| 16 | 15 | dmeqd | ⊢ ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ suc 𝑁 ) = dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) ) |
| 17 | elelsuc | ⊢ ( 𝑁 ∈ ω → 𝑁 ∈ suc ω ) | |
| 18 | satf0sucom | ⊢ ( 𝑁 ∈ suc ω → ( ( ∅ Sat ∅ ) ‘ 𝑁 ) = ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) | |
| 19 | 18 | eqcomd | ⊢ ( 𝑁 ∈ suc ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 20 | 17 19 | syl | ⊢ ( 𝑁 ∈ ω → ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) ) |
| 22 | eqidd | ⊢ ( 𝑁 ∈ ω → ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) = ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ) | |
| 23 | id | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) | |
| 24 | rexeq | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ↔ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ) ) | |
| 25 | 24 | orbi1d | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 26 | 25 | rexeqbi1dv | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 27 | 26 | anbi2d | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 28 | 27 | opabbidv | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) |
| 29 | 23 28 | uneq12d | ⊢ ( 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) → ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 30 | 29 | adantl | ⊢ ( ( 𝑁 ∈ ω ∧ 𝑓 = ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) → ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 31 | fvex | ⊢ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V | |
| 32 | 31 | a1i | ⊢ ( 𝑁 ∈ ω → ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ) |
| 33 | peano1 | ⊢ ∅ ∈ ω | |
| 34 | eleq1 | ⊢ ( 𝑦 = ∅ → ( 𝑦 ∈ ω ↔ ∅ ∈ ω ) ) | |
| 35 | 33 34 | mpbiri | ⊢ ( 𝑦 = ∅ → 𝑦 ∈ ω ) |
| 36 | 35 | adantr | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → 𝑦 ∈ ω ) |
| 37 | 36 | pm4.71ri | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) ) |
| 38 | 37 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) } |
| 39 | omex | ⊢ ω ∈ V | |
| 40 | id | ⊢ ( ω ∈ V → ω ∈ V ) | |
| 41 | unab | ⊢ ( { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) } ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) } ) = { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } | |
| 42 | 31 | abrexex | ⊢ { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) } ∈ V |
| 43 | 39 | abrexex | ⊢ { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) } ∈ V |
| 44 | 42 43 | unex | ⊢ ( { 𝑥 ∣ ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) } ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) } ) ∈ V |
| 45 | 41 44 | eqeltrri | ⊢ { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V |
| 46 | 45 | a1i | ⊢ ( ( ( ω ∈ V ∧ 𝑦 ∈ ω ) ∧ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) → { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V ) |
| 47 | 46 | ralrimiva | ⊢ ( ( ω ∈ V ∧ 𝑦 ∈ ω ) → ∀ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V ) |
| 48 | abrexex2g | ⊢ ( ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ∧ ∀ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) { 𝑥 ∣ ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V ) → { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V ) | |
| 49 | 31 47 48 | sylancr | ⊢ ( ( ω ∈ V ∧ 𝑦 ∈ ω ) → { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ∈ V ) |
| 50 | 40 49 | opabex3rd | ⊢ ( ω ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ∈ V ) |
| 51 | 39 50 | ax-mp | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ∈ V |
| 52 | simpr | ⊢ ( ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) → ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) | |
| 53 | 52 | anim2i | ⊢ ( ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) → ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) |
| 54 | 53 | ssopab2i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) } ⊆ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } |
| 55 | 51 54 | ssexi | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) } ∈ V |
| 56 | 55 | a1i | ⊢ ( 𝑁 ∈ ω → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ ω ∧ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) } ∈ V ) |
| 57 | 38 56 | eqeltrid | ⊢ ( 𝑁 ∈ ω → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ∈ V ) |
| 58 | unexg | ⊢ ( ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∈ V ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ∈ V ) → ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ∈ V ) | |
| 59 | 31 57 58 | sylancr | ⊢ ( 𝑁 ∈ ω → ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ∈ V ) |
| 60 | 22 30 32 59 | fvmptd | ⊢ ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 61 | 21 60 | eqtrd | ⊢ ( 𝑁 ∈ ω → ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 62 | 61 | dmeqd | ⊢ ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = dom ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 63 | dmun | ⊢ dom ( ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) = ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) | |
| 64 | 62 63 | eqtrdi | ⊢ ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) |
| 65 | fmlafv | ⊢ ( 𝑁 ∈ suc ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) | |
| 66 | 17 65 | syl | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ 𝑁 ) = dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ) |
| 67 | 66 | eqcomd | ⊢ ( 𝑁 ∈ ω → dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) = ( Fmla ‘ 𝑁 ) ) |
| 68 | dmopab | ⊢ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } | |
| 69 | 68 | a1i | ⊢ ( 𝑁 ∈ ω → dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) |
| 70 | 0ex | ⊢ ∅ ∈ V | |
| 71 | 70 | isseti | ⊢ ∃ 𝑦 𝑦 = ∅ |
| 72 | 19.41v | ⊢ ( ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ( ∃ 𝑦 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ) | |
| 73 | 71 72 | mpbiran | ⊢ ( ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) ↔ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) |
| 74 | 73 | abbii | ⊢ { 𝑥 ∣ ∃ 𝑦 ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } |
| 75 | 69 74 | eqtrdi | ⊢ ( 𝑁 ∈ ω → dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } = { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ) |
| 76 | 67 75 | uneq12d | ⊢ ( 𝑁 ∈ ω → ( dom ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ∪ dom { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ) ) |
| 77 | 64 76 | eqtrd | ⊢ ( 𝑁 ∈ ω → dom ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) ‘ ( rec ( ( 𝑓 ∈ V ↦ ( 𝑓 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑢 ∈ 𝑓 ( ∃ 𝑣 ∈ 𝑓 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) ) } ) ) , { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 = ∅ ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ) } ) ‘ 𝑁 ) ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ) ) |
| 78 | 9 16 77 | 3eqtrd | ⊢ ( 𝑁 ∈ ω → ( Fmla ‘ suc 𝑁 ) = ( ( Fmla ‘ 𝑁 ) ∪ { 𝑥 ∣ ∃ 𝑢 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) ( ∃ 𝑣 ∈ ( ( ∅ Sat ∅ ) ‘ 𝑁 ) 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∨ ∃ 𝑖 ∈ ω 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ) } ) ) |