This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existence of an ordered pair abstraction if the second components are elements of a set. (Contributed by AV, 17-Sep-2023) (Revised by AV, 9-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabex3rd.1 | |- ( ph -> A e. V ) |
|
| opabex3rd.2 | |- ( ( ph /\ y e. A ) -> { x | ps } e. _V ) |
||
| Assertion | opabex3rd | |- ( ph -> { <. x , y >. | ( y e. A /\ ps ) } e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabex3rd.1 | |- ( ph -> A e. V ) |
|
| 2 | opabex3rd.2 | |- ( ( ph /\ y e. A ) -> { x | ps } e. _V ) |
|
| 3 | 19.42v | |- ( E. x ( y e. A /\ ( z = <. x , y >. /\ ps ) ) <-> ( y e. A /\ E. x ( z = <. x , y >. /\ ps ) ) ) |
|
| 4 | an12 | |- ( ( z = <. x , y >. /\ ( y e. A /\ ps ) ) <-> ( y e. A /\ ( z = <. x , y >. /\ ps ) ) ) |
|
| 5 | 4 | exbii | |- ( E. x ( z = <. x , y >. /\ ( y e. A /\ ps ) ) <-> E. x ( y e. A /\ ( z = <. x , y >. /\ ps ) ) ) |
| 6 | elxp | |- ( z e. ( { x | ps } X. { y } ) <-> E. w E. v ( z = <. w , v >. /\ ( w e. { x | ps } /\ v e. { y } ) ) ) |
|
| 7 | ancom | |- ( ( w e. { x | ps } /\ v e. { y } ) <-> ( v e. { y } /\ w e. { x | ps } ) ) |
|
| 8 | 7 | anbi2i | |- ( ( z = <. w , v >. /\ ( w e. { x | ps } /\ v e. { y } ) ) <-> ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) ) |
| 9 | 8 | 2exbii | |- ( E. w E. v ( z = <. w , v >. /\ ( w e. { x | ps } /\ v e. { y } ) ) <-> E. w E. v ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) ) |
| 10 | 6 9 | bitri | |- ( z e. ( { x | ps } X. { y } ) <-> E. w E. v ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) ) |
| 11 | an12 | |- ( ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) <-> ( v e. { y } /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) ) |
|
| 12 | velsn | |- ( v e. { y } <-> v = y ) |
|
| 13 | 12 | anbi1i | |- ( ( v e. { y } /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) <-> ( v = y /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) ) |
| 14 | 11 13 | bitri | |- ( ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) <-> ( v = y /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) ) |
| 15 | 14 | exbii | |- ( E. v ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) <-> E. v ( v = y /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) ) |
| 16 | opeq2 | |- ( v = y -> <. w , v >. = <. w , y >. ) |
|
| 17 | 16 | eqeq2d | |- ( v = y -> ( z = <. w , v >. <-> z = <. w , y >. ) ) |
| 18 | 17 | anbi1d | |- ( v = y -> ( ( z = <. w , v >. /\ w e. { x | ps } ) <-> ( z = <. w , y >. /\ w e. { x | ps } ) ) ) |
| 19 | 18 | equsexvw | |- ( E. v ( v = y /\ ( z = <. w , v >. /\ w e. { x | ps } ) ) <-> ( z = <. w , y >. /\ w e. { x | ps } ) ) |
| 20 | 15 19 | bitri | |- ( E. v ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) <-> ( z = <. w , y >. /\ w e. { x | ps } ) ) |
| 21 | 20 | exbii | |- ( E. w E. v ( z = <. w , v >. /\ ( v e. { y } /\ w e. { x | ps } ) ) <-> E. w ( z = <. w , y >. /\ w e. { x | ps } ) ) |
| 22 | nfv | |- F/ x z = <. w , y >. |
|
| 23 | nfsab1 | |- F/ x w e. { x | ps } |
|
| 24 | 22 23 | nfan | |- F/ x ( z = <. w , y >. /\ w e. { x | ps } ) |
| 25 | nfv | |- F/ w ( z = <. x , y >. /\ ps ) |
|
| 26 | opeq1 | |- ( w = x -> <. w , y >. = <. x , y >. ) |
|
| 27 | 26 | eqeq2d | |- ( w = x -> ( z = <. w , y >. <-> z = <. x , y >. ) ) |
| 28 | df-clab | |- ( w e. { x | ps } <-> [ w / x ] ps ) |
|
| 29 | sbequ12 | |- ( x = w -> ( ps <-> [ w / x ] ps ) ) |
|
| 30 | 29 | equcoms | |- ( w = x -> ( ps <-> [ w / x ] ps ) ) |
| 31 | 28 30 | bitr4id | |- ( w = x -> ( w e. { x | ps } <-> ps ) ) |
| 32 | 27 31 | anbi12d | |- ( w = x -> ( ( z = <. w , y >. /\ w e. { x | ps } ) <-> ( z = <. x , y >. /\ ps ) ) ) |
| 33 | 24 25 32 | cbvexv1 | |- ( E. w ( z = <. w , y >. /\ w e. { x | ps } ) <-> E. x ( z = <. x , y >. /\ ps ) ) |
| 34 | 10 21 33 | 3bitri | |- ( z e. ( { x | ps } X. { y } ) <-> E. x ( z = <. x , y >. /\ ps ) ) |
| 35 | 34 | anbi2i | |- ( ( y e. A /\ z e. ( { x | ps } X. { y } ) ) <-> ( y e. A /\ E. x ( z = <. x , y >. /\ ps ) ) ) |
| 36 | 3 5 35 | 3bitr4ri | |- ( ( y e. A /\ z e. ( { x | ps } X. { y } ) ) <-> E. x ( z = <. x , y >. /\ ( y e. A /\ ps ) ) ) |
| 37 | 36 | exbii | |- ( E. y ( y e. A /\ z e. ( { x | ps } X. { y } ) ) <-> E. y E. x ( z = <. x , y >. /\ ( y e. A /\ ps ) ) ) |
| 38 | excom | |- ( E. y E. x ( z = <. x , y >. /\ ( y e. A /\ ps ) ) <-> E. x E. y ( z = <. x , y >. /\ ( y e. A /\ ps ) ) ) |
|
| 39 | 37 38 | bitri | |- ( E. y ( y e. A /\ z e. ( { x | ps } X. { y } ) ) <-> E. x E. y ( z = <. x , y >. /\ ( y e. A /\ ps ) ) ) |
| 40 | eliun | |- ( z e. U_ y e. A ( { x | ps } X. { y } ) <-> E. y e. A z e. ( { x | ps } X. { y } ) ) |
|
| 41 | df-rex | |- ( E. y e. A z e. ( { x | ps } X. { y } ) <-> E. y ( y e. A /\ z e. ( { x | ps } X. { y } ) ) ) |
|
| 42 | 40 41 | bitri | |- ( z e. U_ y e. A ( { x | ps } X. { y } ) <-> E. y ( y e. A /\ z e. ( { x | ps } X. { y } ) ) ) |
| 43 | elopab | |- ( z e. { <. x , y >. | ( y e. A /\ ps ) } <-> E. x E. y ( z = <. x , y >. /\ ( y e. A /\ ps ) ) ) |
|
| 44 | 39 42 43 | 3bitr4i | |- ( z e. U_ y e. A ( { x | ps } X. { y } ) <-> z e. { <. x , y >. | ( y e. A /\ ps ) } ) |
| 45 | 44 | eqriv | |- U_ y e. A ( { x | ps } X. { y } ) = { <. x , y >. | ( y e. A /\ ps ) } |
| 46 | vsnex | |- { y } e. _V |
|
| 47 | xpexg | |- ( ( { x | ps } e. _V /\ { y } e. _V ) -> ( { x | ps } X. { y } ) e. _V ) |
|
| 48 | 2 46 47 | sylancl | |- ( ( ph /\ y e. A ) -> ( { x | ps } X. { y } ) e. _V ) |
| 49 | 48 | ralrimiva | |- ( ph -> A. y e. A ( { x | ps } X. { y } ) e. _V ) |
| 50 | iunexg | |- ( ( A e. V /\ A. y e. A ( { x | ps } X. { y } ) e. _V ) -> U_ y e. A ( { x | ps } X. { y } ) e. _V ) |
|
| 51 | 1 49 50 | syl2anc | |- ( ph -> U_ y e. A ( { x | ps } X. { y } ) e. _V ) |
| 52 | 45 51 | eqeltrrid | |- ( ph -> { <. x , y >. | ( y e. A /\ ps ) } e. _V ) |