This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class is a valid Godel formula of height N iff it is the first component of a member of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation at N . (Contributed by AV, 19-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlafvel | |- ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( x = (/) -> ( Fmla ` x ) = ( Fmla ` (/) ) ) |
|
| 2 | 1 | eleq2d | |- ( x = (/) -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` (/) ) ) ) |
| 3 | fveq2 | |- ( x = (/) -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` (/) ) ) |
|
| 4 | 3 | eleq2d | |- ( x = (/) -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
| 5 | 2 4 | bibi12d | |- ( x = (/) -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) ) |
| 6 | 5 | imbi2d | |- ( x = (/) -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) ) ) |
| 7 | fveq2 | |- ( x = y -> ( Fmla ` x ) = ( Fmla ` y ) ) |
|
| 8 | 7 | eleq2d | |- ( x = y -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` y ) ) ) |
| 9 | fveq2 | |- ( x = y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` y ) ) |
|
| 10 | 9 | eleq2d | |- ( x = y -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) |
| 11 | 8 10 | bibi12d | |- ( x = y -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) |
| 12 | 11 | imbi2d | |- ( x = y -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) ) |
| 13 | fveq2 | |- ( x = suc y -> ( Fmla ` x ) = ( Fmla ` suc y ) ) |
|
| 14 | 13 | eleq2d | |- ( x = suc y -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` suc y ) ) ) |
| 15 | fveq2 | |- ( x = suc y -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` suc y ) ) |
|
| 16 | 15 | eleq2d | |- ( x = suc y -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
| 17 | 14 16 | bibi12d | |- ( x = suc y -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) |
| 18 | 17 | imbi2d | |- ( x = suc y -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) ) |
| 19 | fveq2 | |- ( x = N -> ( Fmla ` x ) = ( Fmla ` N ) ) |
|
| 20 | 19 | eleq2d | |- ( x = N -> ( F e. ( Fmla ` x ) <-> F e. ( Fmla ` N ) ) ) |
| 21 | fveq2 | |- ( x = N -> ( ( (/) Sat (/) ) ` x ) = ( ( (/) Sat (/) ) ` N ) ) |
|
| 22 | 21 | eleq2d | |- ( x = N -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 23 | 20 22 | bibi12d | |- ( x = N -> ( ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) <-> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 24 | 23 | imbi2d | |- ( x = N -> ( ( F e. _V -> ( F e. ( Fmla ` x ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` x ) ) ) <-> ( F e. _V -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) ) |
| 25 | eqeq1 | |- ( x = F -> ( x = ( i e.g j ) <-> F = ( i e.g j ) ) ) |
|
| 26 | 25 | 2rexbidv | |- ( x = F -> ( E. i e. _om E. j e. _om x = ( i e.g j ) <-> E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
| 27 | 26 | elrab | |- ( F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
| 28 | eqidd | |- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> (/) = (/) ) |
|
| 29 | simpr | |- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> E. i e. _om E. j e. _om F = ( i e.g j ) ) |
|
| 30 | 28 29 | jca | |- ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
| 31 | simpr | |- ( ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> E. i e. _om E. j e. _om F = ( i e.g j ) ) |
|
| 32 | 31 | anim2i | |- ( ( F e. _V /\ ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) -> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) |
| 33 | 32 | ex | |- ( F e. _V -> ( ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) -> ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 34 | 30 33 | impbid2 | |- ( F e. _V -> ( ( F e. _V /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 35 | 27 34 | bitrid | |- ( F e. _V -> ( F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 36 | fmla0 | |- ( Fmla ` (/) ) = { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } |
|
| 37 | 36 | eleq2i | |- ( F e. ( Fmla ` (/) ) <-> F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) |
| 38 | 37 | a1i | |- ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> F e. { x e. _V | E. i e. _om E. j e. _om x = ( i e.g j ) } ) ) |
| 39 | satf00 | |- ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } |
|
| 40 | 39 | a1i | |- ( F e. _V -> ( ( (/) Sat (/) ) ` (/) ) = { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) |
| 41 | 40 | eleq2d | |- ( F e. _V -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) <-> <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } ) ) |
| 42 | 0ex | |- (/) e. _V |
|
| 43 | eqeq1 | |- ( y = (/) -> ( y = (/) <-> (/) = (/) ) ) |
|
| 44 | 43 26 | bi2anan9r | |- ( ( x = F /\ y = (/) ) -> ( ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 45 | 44 | opelopabga | |- ( ( F e. _V /\ (/) e. _V ) -> ( <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 46 | 42 45 | mpan2 | |- ( F e. _V -> ( <. F , (/) >. e. { <. x , y >. | ( y = (/) /\ E. i e. _om E. j e. _om x = ( i e.g j ) ) } <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 47 | 41 46 | bitrd | |- ( F e. _V -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) <-> ( (/) = (/) /\ E. i e. _om E. j e. _om F = ( i e.g j ) ) ) ) |
| 48 | 35 38 47 | 3bitr4d | |- ( F e. _V -> ( F e. ( Fmla ` (/) ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` (/) ) ) ) |
| 49 | eqid | |- (/) = (/) |
|
| 50 | 49 | biantrur | |- ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
| 51 | 50 | bicomi | |- ( ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) |
| 52 | 51 | a1i | |- ( F e. _V -> ( ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
| 53 | eqeq1 | |- ( z = (/) -> ( z = (/) <-> (/) = (/) ) ) |
|
| 54 | eqeq1 | |- ( x = F -> ( x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> F = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
|
| 55 | 54 | rexbidv | |- ( x = F -> ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) <-> E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) ) ) |
| 56 | eqeq1 | |- ( x = F -> ( x = A.g i ( 1st ` u ) <-> F = A.g i ( 1st ` u ) ) ) |
|
| 57 | 56 | rexbidv | |- ( x = F -> ( E. i e. _om x = A.g i ( 1st ` u ) <-> E. i e. _om F = A.g i ( 1st ` u ) ) ) |
| 58 | 55 57 | orbi12d | |- ( x = F -> ( ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
| 59 | 58 | rexbidv | |- ( x = F -> ( E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
| 60 | 53 59 | bi2anan9r | |- ( ( x = F /\ z = (/) ) -> ( ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
| 61 | 60 | opelopabga | |- ( ( F e. _V /\ (/) e. _V ) -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
| 62 | 42 61 | mpan2 | |- ( F e. _V -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> ( (/) = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) ) |
| 63 | 59 | elabg | |- ( F e. _V -> ( F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } <-> E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) F = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om F = A.g i ( 1st ` u ) ) ) ) |
| 64 | 52 62 63 | 3bitr4d | |- ( F e. _V -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 65 | 64 | adantl | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } <-> F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
| 66 | 65 | orbi2d | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 67 | eqid | |- ( (/) Sat (/) ) = ( (/) Sat (/) ) |
|
| 68 | 67 | satf0suc | |- ( y e. _om -> ( ( (/) Sat (/) ) ` suc y ) = ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
| 69 | 68 | eleq2d | |- ( y e. _om -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> <. F , (/) >. e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 70 | elun | |- ( <. F , (/) >. e. ( ( ( (/) Sat (/) ) ` y ) u. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) |
|
| 71 | 69 70 | bitrdi | |- ( y e. _om -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 72 | 71 | ad2antrr | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ <. F , (/) >. e. { <. x , z >. | ( z = (/) /\ E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) ) } ) ) ) |
| 73 | fmlasuc0 | |- ( y e. _om -> ( Fmla ` suc y ) = ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
|
| 74 | 73 | eleq2d | |- ( y e. _om -> ( F e. ( Fmla ` suc y ) <-> F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 75 | 74 | ad2antrr | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 76 | elun | |- ( F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) |
|
| 77 | 76 | a1i | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( ( Fmla ` y ) u. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 78 | simpr | |- ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) -> ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) |
|
| 79 | 78 | imp | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) |
| 80 | 79 | orbi1d | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( ( F e. ( Fmla ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 81 | 75 77 80 | 3bitrd | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> ( <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) \/ F e. { x | E. u e. ( ( (/) Sat (/) ) ` y ) ( E. v e. ( ( (/) Sat (/) ) ` y ) x = ( ( 1st ` u ) |g ( 1st ` v ) ) \/ E. i e. _om x = A.g i ( 1st ` u ) ) } ) ) ) |
| 82 | 66 72 81 | 3bitr4rd | |- ( ( ( y e. _om /\ ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) ) /\ F e. _V ) -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) |
| 83 | 82 | exp31 | |- ( y e. _om -> ( ( F e. _V -> ( F e. ( Fmla ` y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` y ) ) ) -> ( F e. _V -> ( F e. ( Fmla ` suc y ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` suc y ) ) ) ) ) |
| 84 | 6 12 18 24 48 83 | finds | |- ( N e. _om -> ( F e. _V -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 85 | 84 | com12 | |- ( F e. _V -> ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 86 | prcnel | |- ( -. F e. _V -> -. F e. ( Fmla ` N ) ) |
|
| 87 | 86 | adantr | |- ( ( -. F e. _V /\ N e. _om ) -> -. F e. ( Fmla ` N ) ) |
| 88 | opprc1 | |- ( -. F e. _V -> <. F , (/) >. = (/) ) |
|
| 89 | 88 | adantr | |- ( ( -. F e. _V /\ N e. _om ) -> <. F , (/) >. = (/) ) |
| 90 | satf0n0 | |- ( N e. _om -> (/) e/ ( ( (/) Sat (/) ) ` N ) ) |
|
| 91 | df-nel | |- ( (/) e/ ( ( (/) Sat (/) ) ` N ) <-> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
|
| 92 | 90 91 | sylib | |- ( N e. _om -> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
| 93 | 92 | adantl | |- ( ( -. F e. _V /\ N e. _om ) -> -. (/) e. ( ( (/) Sat (/) ) ` N ) ) |
| 94 | 89 93 | eqneltrd | |- ( ( -. F e. _V /\ N e. _om ) -> -. <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 95 | 87 94 | 2falsed | |- ( ( -. F e. _V /\ N e. _om ) -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 96 | 95 | ex | |- ( -. F e. _V -> ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 97 | 85 96 | pm2.61i | |- ( N e. _om -> ( F e. ( Fmla ` N ) <-> <. F , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |