This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The valid Godel formulas of height ( N + 1 ) , expressed by the valid Godel formulas of height N . (Contributed by AV, 20-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fmlasuc | |- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmlasuc0 | |- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } ) ) |
|
| 2 | eqid | |- ( (/) Sat (/) ) = ( (/) Sat (/) ) |
|
| 3 | 2 | satf0op | |- ( N e. _om -> ( y e. ( ( (/) Sat (/) ) ` N ) <-> E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 4 | fveq2 | |- ( z = w -> ( 1st ` z ) = ( 1st ` w ) ) |
|
| 5 | 4 | oveq2d | |- ( z = w -> ( ( 1st ` y ) |g ( 1st ` z ) ) = ( ( 1st ` y ) |g ( 1st ` w ) ) ) |
| 6 | 5 | eqeq2d | |- ( z = w -> ( x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> x = ( ( 1st ` y ) |g ( 1st ` w ) ) ) ) |
| 7 | 6 | cbvrexvw | |- ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) ) |
| 8 | 7 | orbi1i | |- ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 9 | fmlafvel | |- ( N e. _om -> ( z e. ( Fmla ` N ) <-> <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
|
| 10 | 9 | biimprd | |- ( N e. _om -> ( <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) -> z e. ( Fmla ` N ) ) ) |
| 11 | 10 | adantld | |- ( N e. _om -> ( ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> z e. ( Fmla ` N ) ) ) |
| 12 | 11 | imp | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> z e. ( Fmla ` N ) ) |
| 13 | vex | |- z e. _V |
|
| 14 | 0ex | |- (/) e. _V |
|
| 15 | 13 14 | op1std | |- ( y = <. z , (/) >. -> ( 1st ` y ) = z ) |
| 16 | 15 | eleq1d | |- ( y = <. z , (/) >. -> ( ( 1st ` y ) e. ( Fmla ` N ) <-> z e. ( Fmla ` N ) ) ) |
| 17 | 16 | ad2antrl | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( 1st ` y ) e. ( Fmla ` N ) <-> z e. ( Fmla ` N ) ) ) |
| 18 | 12 17 | mpbird | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( 1st ` y ) e. ( Fmla ` N ) ) |
| 19 | 18 | 3adant3 | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> ( 1st ` y ) e. ( Fmla ` N ) ) |
| 20 | oveq1 | |- ( u = ( 1st ` y ) -> ( u |g v ) = ( ( 1st ` y ) |g v ) ) |
|
| 21 | 20 | eqeq2d | |- ( u = ( 1st ` y ) -> ( x = ( u |g v ) <-> x = ( ( 1st ` y ) |g v ) ) ) |
| 22 | 21 | rexbidv | |- ( u = ( 1st ` y ) -> ( E. v e. ( Fmla ` N ) x = ( u |g v ) <-> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) ) |
| 23 | eqidd | |- ( u = ( 1st ` y ) -> i = i ) |
|
| 24 | id | |- ( u = ( 1st ` y ) -> u = ( 1st ` y ) ) |
|
| 25 | 23 24 | goaleq12d | |- ( u = ( 1st ` y ) -> A.g i u = A.g i ( 1st ` y ) ) |
| 26 | 25 | eqeq2d | |- ( u = ( 1st ` y ) -> ( x = A.g i u <-> x = A.g i ( 1st ` y ) ) ) |
| 27 | 26 | rexbidv | |- ( u = ( 1st ` y ) -> ( E. i e. _om x = A.g i u <-> E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 28 | 22 27 | orbi12d | |- ( u = ( 1st ` y ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 29 | 28 | adantl | |- ( ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) /\ u = ( 1st ` y ) ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) <-> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 30 | 2 | satf0op | |- ( N e. _om -> ( w e. ( ( (/) Sat (/) ) ` N ) <-> E. y ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) ) |
| 31 | fmlafvel | |- ( N e. _om -> ( y e. ( Fmla ` N ) <-> <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
|
| 32 | 31 | biimprd | |- ( N e. _om -> ( <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) -> y e. ( Fmla ` N ) ) ) |
| 33 | 32 | adantld | |- ( N e. _om -> ( ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> y e. ( Fmla ` N ) ) ) |
| 34 | 33 | imp | |- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> y e. ( Fmla ` N ) ) |
| 35 | vex | |- y e. _V |
|
| 36 | 35 14 | op1std | |- ( w = <. y , (/) >. -> ( 1st ` w ) = y ) |
| 37 | 36 | eleq1d | |- ( w = <. y , (/) >. -> ( ( 1st ` w ) e. ( Fmla ` N ) <-> y e. ( Fmla ` N ) ) ) |
| 38 | 37 | ad2antrl | |- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( 1st ` w ) e. ( Fmla ` N ) <-> y e. ( Fmla ` N ) ) ) |
| 39 | 34 38 | mpbird | |- ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( 1st ` w ) e. ( Fmla ` N ) ) |
| 40 | 39 | adantr | |- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> ( 1st ` w ) e. ( Fmla ` N ) ) |
| 41 | oveq2 | |- ( v = ( 1st ` w ) -> ( z |g v ) = ( z |g ( 1st ` w ) ) ) |
|
| 42 | 41 | eqeq2d | |- ( v = ( 1st ` w ) -> ( x = ( z |g v ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 43 | 42 | adantl | |- ( ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) /\ v = ( 1st ` w ) ) -> ( x = ( z |g v ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 44 | simpr | |- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> x = ( z |g ( 1st ` w ) ) ) |
|
| 45 | 40 43 44 | rspcedvd | |- ( ( ( N e. _om /\ ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) /\ x = ( z |g ( 1st ` w ) ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) |
| 46 | 45 | exp31 | |- ( N e. _om -> ( ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 47 | 46 | exlimdv | |- ( N e. _om -> ( E. y ( w = <. y , (/) >. /\ <. y , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 48 | 30 47 | sylbid | |- ( N e. _om -> ( w e. ( ( (/) Sat (/) ) ` N ) -> ( x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 49 | 48 | rexlimdv | |- ( N e. _om -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 50 | 49 | adantr | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 51 | 15 | oveq1d | |- ( y = <. z , (/) >. -> ( ( 1st ` y ) |g ( 1st ` w ) ) = ( z |g ( 1st ` w ) ) ) |
| 52 | 51 | eqeq2d | |- ( y = <. z , (/) >. -> ( x = ( ( 1st ` y ) |g ( 1st ` w ) ) <-> x = ( z |g ( 1st ` w ) ) ) ) |
| 53 | 52 | rexbidv | |- ( y = <. z , (/) >. -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) <-> E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) ) ) |
| 54 | 15 | oveq1d | |- ( y = <. z , (/) >. -> ( ( 1st ` y ) |g v ) = ( z |g v ) ) |
| 55 | 54 | eqeq2d | |- ( y = <. z , (/) >. -> ( x = ( ( 1st ` y ) |g v ) <-> x = ( z |g v ) ) ) |
| 56 | 55 | rexbidv | |- ( y = <. z , (/) >. -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) <-> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) |
| 57 | 53 56 | imbi12d | |- ( y = <. z , (/) >. -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 58 | 57 | ad2antrl | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) <-> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( z |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( z |g v ) ) ) ) |
| 59 | 50 58 | mpbird | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) -> E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) ) ) |
| 60 | 59 | orim1d | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 61 | 60 | 3impia | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> ( E. v e. ( Fmla ` N ) x = ( ( 1st ` y ) |g v ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 62 | 19 29 61 | rspcedvd | |- ( ( N e. _om /\ ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) /\ ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) |
| 63 | 62 | 3exp | |- ( N e. _om -> ( ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 64 | 63 | exlimdv | |- ( N e. _om -> ( E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. w e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` w ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 65 | 8 64 | syl7bi | |- ( N e. _om -> ( E. z ( y = <. z , (/) >. /\ <. z , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 66 | 3 65 | sylbid | |- ( N e. _om -> ( y e. ( ( (/) Sat (/) ) ` N ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) ) |
| 67 | 66 | rexlimdv | |- ( N e. _om -> ( E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) -> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 68 | fmlafvel | |- ( N e. _om -> ( u e. ( Fmla ` N ) <-> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
|
| 69 | 68 | biimpa | |- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 70 | 69 | adantr | |- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> <. u , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 71 | vex | |- u e. _V |
|
| 72 | 71 14 | op1std | |- ( y = <. u , (/) >. -> ( 1st ` y ) = u ) |
| 73 | 72 | oveq1d | |- ( y = <. u , (/) >. -> ( ( 1st ` y ) |g ( 1st ` z ) ) = ( u |g ( 1st ` z ) ) ) |
| 74 | 73 | eqeq2d | |- ( y = <. u , (/) >. -> ( x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> x = ( u |g ( 1st ` z ) ) ) ) |
| 75 | 74 | rexbidv | |- ( y = <. u , (/) >. -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) <-> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) ) |
| 76 | eqidd | |- ( y = <. u , (/) >. -> i = i ) |
|
| 77 | 76 72 | goaleq12d | |- ( y = <. u , (/) >. -> A.g i ( 1st ` y ) = A.g i u ) |
| 78 | 77 | eqeq2d | |- ( y = <. u , (/) >. -> ( x = A.g i ( 1st ` y ) <-> x = A.g i u ) ) |
| 79 | 78 | rexbidv | |- ( y = <. u , (/) >. -> ( E. i e. _om x = A.g i ( 1st ` y ) <-> E. i e. _om x = A.g i u ) ) |
| 80 | 75 79 | orbi12d | |- ( y = <. u , (/) >. -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 81 | 80 | adantl | |- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) /\ y = <. u , (/) >. ) -> ( ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 82 | fmlafvel | |- ( N e. _om -> ( v e. ( Fmla ` N ) <-> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
|
| 83 | 82 | biimpd | |- ( N e. _om -> ( v e. ( Fmla ` N ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 84 | 83 | adantr | |- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( v e. ( Fmla ` N ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) ) |
| 85 | 84 | imp | |- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 86 | 85 | adantr | |- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> <. v , (/) >. e. ( ( (/) Sat (/) ) ` N ) ) |
| 87 | vex | |- v e. _V |
|
| 88 | 87 14 | op1std | |- ( z = <. v , (/) >. -> ( 1st ` z ) = v ) |
| 89 | 88 | oveq2d | |- ( z = <. v , (/) >. -> ( u |g ( 1st ` z ) ) = ( u |g v ) ) |
| 90 | 89 | eqeq2d | |- ( z = <. v , (/) >. -> ( x = ( u |g ( 1st ` z ) ) <-> x = ( u |g v ) ) ) |
| 91 | 90 | adantl | |- ( ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) /\ z = <. v , (/) >. ) -> ( x = ( u |g ( 1st ` z ) ) <-> x = ( u |g v ) ) ) |
| 92 | simpr | |- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> x = ( u |g v ) ) |
|
| 93 | 86 91 92 | rspcedvd | |- ( ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ v e. ( Fmla ` N ) ) /\ x = ( u |g v ) ) -> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) |
| 94 | 93 | rexlimdva2 | |- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( E. v e. ( Fmla ` N ) x = ( u |g v ) -> E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) ) ) |
| 95 | 94 | orim1d | |- ( ( N e. _om /\ u e. ( Fmla ` N ) ) -> ( ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) ) |
| 96 | 95 | imp | |- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( u |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i u ) ) |
| 97 | 70 81 96 | rspcedvd | |- ( ( ( N e. _om /\ u e. ( Fmla ` N ) ) /\ ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) -> E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) |
| 98 | 97 | rexlimdva2 | |- ( N e. _om -> ( E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) -> E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) ) ) |
| 99 | 67 98 | impbid | |- ( N e. _om -> ( E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) <-> E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) ) ) |
| 100 | 99 | abbidv | |- ( N e. _om -> { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } = { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) |
| 101 | 100 | uneq2d | |- ( N e. _om -> ( ( Fmla ` N ) u. { x | E. y e. ( ( (/) Sat (/) ) ` N ) ( E. z e. ( ( (/) Sat (/) ) ` N ) x = ( ( 1st ` y ) |g ( 1st ` z ) ) \/ E. i e. _om x = A.g i ( 1st ` y ) ) } ) = ( ( Fmla ` N ) u. { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) ) |
| 102 | 1 101 | eqtrd | |- ( N e. _om -> ( Fmla ` suc N ) = ( ( Fmla ` N ) u. { x | E. u e. ( Fmla ` N ) ( E. v e. ( Fmla ` N ) x = ( u |g v ) \/ E. i e. _om x = A.g i u ) } ) ) |