This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdom2en01 | |- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 2 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 3 | 1 2 | eqsstri | |- _om C_ Fin |
| 4 | 2onn | |- 2o e. _om |
|
| 5 | 3 4 | sselii | |- 2o e. Fin |
| 6 | sdomdom | |- ( A ~< 2o -> A ~<_ 2o ) |
|
| 7 | domfi | |- ( ( 2o e. Fin /\ A ~<_ 2o ) -> A e. Fin ) |
|
| 8 | 5 6 7 | sylancr | |- ( A ~< 2o -> A e. Fin ) |
| 9 | id | |- ( A = (/) -> A = (/) ) |
|
| 10 | 0fi | |- (/) e. Fin |
|
| 11 | 9 10 | eqeltrdi | |- ( A = (/) -> A e. Fin ) |
| 12 | 1onn | |- 1o e. _om |
|
| 13 | 3 12 | sselii | |- 1o e. Fin |
| 14 | enfi | |- ( A ~~ 1o -> ( A e. Fin <-> 1o e. Fin ) ) |
|
| 15 | 13 14 | mpbiri | |- ( A ~~ 1o -> A e. Fin ) |
| 16 | 11 15 | jaoi | |- ( ( A = (/) \/ A ~~ 1o ) -> A e. Fin ) |
| 17 | df2o3 | |- 2o = { (/) , 1o } |
|
| 18 | 17 | eleq2i | |- ( ( card ` A ) e. 2o <-> ( card ` A ) e. { (/) , 1o } ) |
| 19 | fvex | |- ( card ` A ) e. _V |
|
| 20 | 19 | elpr | |- ( ( card ` A ) e. { (/) , 1o } <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) |
| 21 | 18 20 | bitri | |- ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) |
| 22 | 21 | a1i | |- ( A e. Fin -> ( ( card ` A ) e. 2o <-> ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) ) ) |
| 23 | cardnn | |- ( 2o e. _om -> ( card ` 2o ) = 2o ) |
|
| 24 | 4 23 | ax-mp | |- ( card ` 2o ) = 2o |
| 25 | 24 | eleq2i | |- ( ( card ` A ) e. ( card ` 2o ) <-> ( card ` A ) e. 2o ) |
| 26 | finnum | |- ( A e. Fin -> A e. dom card ) |
|
| 27 | 2on | |- 2o e. On |
|
| 28 | onenon | |- ( 2o e. On -> 2o e. dom card ) |
|
| 29 | 27 28 | ax-mp | |- 2o e. dom card |
| 30 | cardsdom2 | |- ( ( A e. dom card /\ 2o e. dom card ) -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) |
|
| 31 | 26 29 30 | sylancl | |- ( A e. Fin -> ( ( card ` A ) e. ( card ` 2o ) <-> A ~< 2o ) ) |
| 32 | 25 31 | bitr3id | |- ( A e. Fin -> ( ( card ` A ) e. 2o <-> A ~< 2o ) ) |
| 33 | cardnueq0 | |- ( A e. dom card -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
|
| 34 | 26 33 | syl | |- ( A e. Fin -> ( ( card ` A ) = (/) <-> A = (/) ) ) |
| 35 | cardnn | |- ( 1o e. _om -> ( card ` 1o ) = 1o ) |
|
| 36 | 12 35 | ax-mp | |- ( card ` 1o ) = 1o |
| 37 | 36 | eqeq2i | |- ( ( card ` A ) = ( card ` 1o ) <-> ( card ` A ) = 1o ) |
| 38 | finnum | |- ( 1o e. Fin -> 1o e. dom card ) |
|
| 39 | 13 38 | ax-mp | |- 1o e. dom card |
| 40 | carden2 | |- ( ( A e. dom card /\ 1o e. dom card ) -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) |
|
| 41 | 26 39 40 | sylancl | |- ( A e. Fin -> ( ( card ` A ) = ( card ` 1o ) <-> A ~~ 1o ) ) |
| 42 | 37 41 | bitr3id | |- ( A e. Fin -> ( ( card ` A ) = 1o <-> A ~~ 1o ) ) |
| 43 | 34 42 | orbi12d | |- ( A e. Fin -> ( ( ( card ` A ) = (/) \/ ( card ` A ) = 1o ) <-> ( A = (/) \/ A ~~ 1o ) ) ) |
| 44 | 22 32 43 | 3bitr3d | |- ( A e. Fin -> ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) ) |
| 45 | 8 16 44 | pm5.21nii | |- ( A ~< 2o <-> ( A = (/) \/ A ~~ 1o ) ) |