This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Definition of a V-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin5 | |- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fin5 | |- Fin5 = { x | ( x = (/) \/ x ~< ( x |_| x ) ) } |
|
| 2 | 1 | eleq2i | |- ( A e. Fin5 <-> A e. { x | ( x = (/) \/ x ~< ( x |_| x ) ) } ) |
| 3 | id | |- ( A = (/) -> A = (/) ) |
|
| 4 | 0ex | |- (/) e. _V |
|
| 5 | 3 4 | eqeltrdi | |- ( A = (/) -> A e. _V ) |
| 6 | relsdom | |- Rel ~< |
|
| 7 | 6 | brrelex1i | |- ( A ~< ( A |_| A ) -> A e. _V ) |
| 8 | 5 7 | jaoi | |- ( ( A = (/) \/ A ~< ( A |_| A ) ) -> A e. _V ) |
| 9 | eqeq1 | |- ( x = A -> ( x = (/) <-> A = (/) ) ) |
|
| 10 | id | |- ( x = A -> x = A ) |
|
| 11 | djueq12 | |- ( ( x = A /\ x = A ) -> ( x |_| x ) = ( A |_| A ) ) |
|
| 12 | 11 | anidms | |- ( x = A -> ( x |_| x ) = ( A |_| A ) ) |
| 13 | 10 12 | breq12d | |- ( x = A -> ( x ~< ( x |_| x ) <-> A ~< ( A |_| A ) ) ) |
| 14 | 9 13 | orbi12d | |- ( x = A -> ( ( x = (/) \/ x ~< ( x |_| x ) ) <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) ) |
| 15 | 8 14 | elab3 | |- ( A e. { x | ( x = (/) \/ x ~< ( x |_| x ) ) } <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
| 16 | 2 15 | bitri | |- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |