This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . By ? Fin3DS ? , U achieves its minimum ( X in the synopsis above, but we will not be assigning a symbol here). TODO: Fix comment; math symbol Fin3DS does not exist. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
||
| Assertion | fin23lem17 | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U e. ran U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fin23lem17.f | |- F = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |
|
| 3 | 1 | fin23lem13 | |- ( c e. _om -> ( U ` suc c ) C_ ( U ` c ) ) |
| 4 | 3 | rgen | |- A. c e. _om ( U ` suc c ) C_ ( U ` c ) |
| 5 | fveq1 | |- ( b = U -> ( b ` suc c ) = ( U ` suc c ) ) |
|
| 6 | fveq1 | |- ( b = U -> ( b ` c ) = ( U ` c ) ) |
|
| 7 | 5 6 | sseq12d | |- ( b = U -> ( ( b ` suc c ) C_ ( b ` c ) <-> ( U ` suc c ) C_ ( U ` c ) ) ) |
| 8 | 7 | ralbidv | |- ( b = U -> ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) <-> A. c e. _om ( U ` suc c ) C_ ( U ` c ) ) ) |
| 9 | rneq | |- ( b = U -> ran b = ran U ) |
|
| 10 | 9 | inteqd | |- ( b = U -> |^| ran b = |^| ran U ) |
| 11 | 10 9 | eleq12d | |- ( b = U -> ( |^| ran b e. ran b <-> |^| ran U e. ran U ) ) |
| 12 | 8 11 | imbi12d | |- ( b = U -> ( ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) <-> ( A. c e. _om ( U ` suc c ) C_ ( U ` c ) -> |^| ran U e. ran U ) ) ) |
| 13 | 2 | isfin3ds | |- ( U. ran t e. F -> ( U. ran t e. F <-> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) ) |
| 14 | 13 | ibi | |- ( U. ran t e. F -> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) |
| 15 | 14 | adantr | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> A. b e. ( ~P U. ran t ^m _om ) ( A. c e. _om ( b ` suc c ) C_ ( b ` c ) -> |^| ran b e. ran b ) ) |
| 16 | 1 | fnseqom | |- U Fn _om |
| 17 | dffn3 | |- ( U Fn _om <-> U : _om --> ran U ) |
|
| 18 | 16 17 | mpbi | |- U : _om --> ran U |
| 19 | pwuni | |- ran U C_ ~P U. ran U |
|
| 20 | 1 | fin23lem16 | |- U. ran U = U. ran t |
| 21 | 20 | pweqi | |- ~P U. ran U = ~P U. ran t |
| 22 | 19 21 | sseqtri | |- ran U C_ ~P U. ran t |
| 23 | fss | |- ( ( U : _om --> ran U /\ ran U C_ ~P U. ran t ) -> U : _om --> ~P U. ran t ) |
|
| 24 | 18 22 23 | mp2an | |- U : _om --> ~P U. ran t |
| 25 | vex | |- t e. _V |
|
| 26 | 25 | rnex | |- ran t e. _V |
| 27 | 26 | uniex | |- U. ran t e. _V |
| 28 | 27 | pwex | |- ~P U. ran t e. _V |
| 29 | f1f | |- ( t : _om -1-1-> V -> t : _om --> V ) |
|
| 30 | dmfex | |- ( ( t e. _V /\ t : _om --> V ) -> _om e. _V ) |
|
| 31 | 25 29 30 | sylancr | |- ( t : _om -1-1-> V -> _om e. _V ) |
| 32 | 31 | adantl | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> _om e. _V ) |
| 33 | elmapg | |- ( ( ~P U. ran t e. _V /\ _om e. _V ) -> ( U e. ( ~P U. ran t ^m _om ) <-> U : _om --> ~P U. ran t ) ) |
|
| 34 | 28 32 33 | sylancr | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( U e. ( ~P U. ran t ^m _om ) <-> U : _om --> ~P U. ran t ) ) |
| 35 | 24 34 | mpbiri | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> U e. ( ~P U. ran t ^m _om ) ) |
| 36 | 12 15 35 | rspcdva | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> ( A. c e. _om ( U ` suc c ) C_ ( U ` c ) -> |^| ran U e. ran U ) ) |
| 37 | 4 36 | mpi | |- ( ( U. ran t e. F /\ t : _om -1-1-> V ) -> |^| ran U e. ran U ) |