This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . U will never evolve to an empty set if it did not start with one. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem14 | |- ( ( A e. _om /\ U. ran t =/= (/) ) -> ( U ` A ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fveq2 | |- ( a = (/) -> ( U ` a ) = ( U ` (/) ) ) |
|
| 3 | 2 | neeq1d | |- ( a = (/) -> ( ( U ` a ) =/= (/) <-> ( U ` (/) ) =/= (/) ) ) |
| 4 | 3 | imbi2d | |- ( a = (/) -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` (/) ) =/= (/) ) ) ) |
| 5 | fveq2 | |- ( a = b -> ( U ` a ) = ( U ` b ) ) |
|
| 6 | 5 | neeq1d | |- ( a = b -> ( ( U ` a ) =/= (/) <-> ( U ` b ) =/= (/) ) ) |
| 7 | 6 | imbi2d | |- ( a = b -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` b ) =/= (/) ) ) ) |
| 8 | fveq2 | |- ( a = suc b -> ( U ` a ) = ( U ` suc b ) ) |
|
| 9 | 8 | neeq1d | |- ( a = suc b -> ( ( U ` a ) =/= (/) <-> ( U ` suc b ) =/= (/) ) ) |
| 10 | 9 | imbi2d | |- ( a = suc b -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` suc b ) =/= (/) ) ) ) |
| 11 | fveq2 | |- ( a = A -> ( U ` a ) = ( U ` A ) ) |
|
| 12 | 11 | neeq1d | |- ( a = A -> ( ( U ` a ) =/= (/) <-> ( U ` A ) =/= (/) ) ) |
| 13 | 12 | imbi2d | |- ( a = A -> ( ( U. ran t =/= (/) -> ( U ` a ) =/= (/) ) <-> ( U. ran t =/= (/) -> ( U ` A ) =/= (/) ) ) ) |
| 14 | vex | |- t e. _V |
|
| 15 | 14 | rnex | |- ran t e. _V |
| 16 | 15 | uniex | |- U. ran t e. _V |
| 17 | 1 | seqom0g | |- ( U. ran t e. _V -> ( U ` (/) ) = U. ran t ) |
| 18 | 16 17 | mp1i | |- ( U. ran t =/= (/) -> ( U ` (/) ) = U. ran t ) |
| 19 | id | |- ( U. ran t =/= (/) -> U. ran t =/= (/) ) |
|
| 20 | 18 19 | eqnetrd | |- ( U. ran t =/= (/) -> ( U ` (/) ) =/= (/) ) |
| 21 | 1 | fin23lem12 | |- ( b e. _om -> ( U ` suc b ) = if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) ) |
| 22 | 21 | adantr | |- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> ( U ` suc b ) = if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) ) |
| 23 | iftrue | |- ( ( ( t ` b ) i^i ( U ` b ) ) = (/) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( U ` b ) ) |
|
| 24 | 23 | adantr | |- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( U ` b ) ) |
| 25 | simprr | |- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> ( U ` b ) =/= (/) ) |
|
| 26 | 24 25 | eqnetrd | |- ( ( ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
| 27 | iffalse | |- ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( ( t ` b ) i^i ( U ` b ) ) ) |
|
| 28 | 27 | adantr | |- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) = ( ( t ` b ) i^i ( U ` b ) ) ) |
| 29 | neqne | |- ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) -> ( ( t ` b ) i^i ( U ` b ) ) =/= (/) ) |
|
| 30 | 29 | adantr | |- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> ( ( t ` b ) i^i ( U ` b ) ) =/= (/) ) |
| 31 | 28 30 | eqnetrd | |- ( ( -. ( ( t ` b ) i^i ( U ` b ) ) = (/) /\ ( b e. _om /\ ( U ` b ) =/= (/) ) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
| 32 | 26 31 | pm2.61ian | |- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> if ( ( ( t ` b ) i^i ( U ` b ) ) = (/) , ( U ` b ) , ( ( t ` b ) i^i ( U ` b ) ) ) =/= (/) ) |
| 33 | 22 32 | eqnetrd | |- ( ( b e. _om /\ ( U ` b ) =/= (/) ) -> ( U ` suc b ) =/= (/) ) |
| 34 | 33 | ex | |- ( b e. _om -> ( ( U ` b ) =/= (/) -> ( U ` suc b ) =/= (/) ) ) |
| 35 | 34 | imim2d | |- ( b e. _om -> ( ( U. ran t =/= (/) -> ( U ` b ) =/= (/) ) -> ( U. ran t =/= (/) -> ( U ` suc b ) =/= (/) ) ) ) |
| 36 | 4 7 10 13 20 35 | finds | |- ( A e. _om -> ( U. ran t =/= (/) -> ( U ` A ) =/= (/) ) ) |
| 37 | 36 | imp | |- ( ( A e. _om /\ U. ran t =/= (/) ) -> ( U ` A ) =/= (/) ) |