This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sorpssi | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | solin | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B [C.] C \/ B = C \/ C [C.] B ) ) |
|
| 2 | elex | |- ( C e. A -> C e. _V ) |
|
| 3 | 2 | ad2antll | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> C e. _V ) |
| 4 | brrpssg | |- ( C e. _V -> ( B [C.] C <-> B C. C ) ) |
|
| 5 | 3 4 | syl | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B [C.] C <-> B C. C ) ) |
| 6 | biidd | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B = C <-> B = C ) ) |
|
| 7 | elex | |- ( B e. A -> B e. _V ) |
|
| 8 | 7 | ad2antrl | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> B e. _V ) |
| 9 | brrpssg | |- ( B e. _V -> ( C [C.] B <-> C C. B ) ) |
|
| 10 | 8 9 | syl | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( C [C.] B <-> C C. B ) ) |
| 11 | 5 6 10 | 3orbi123d | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( ( B [C.] C \/ B = C \/ C [C.] B ) <-> ( B C. C \/ B = C \/ C C. B ) ) ) |
| 12 | 1 11 | mpbid | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C. C \/ B = C \/ C C. B ) ) |
| 13 | sspsstri | |- ( ( B C_ C \/ C C_ B ) <-> ( B C. C \/ B = C \/ C C. B ) ) |
|
| 14 | 12 13 | sylibr | |- ( ( [C.] Or A /\ ( B e. A /\ C e. A ) ) -> ( B C_ C \/ C C_ B ) ) |