This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . In a chain of finite sets, equinumerosity is equivalent to equality. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem25 | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpss2 | |- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
|
| 2 | php3 | |- ( ( B e. Fin /\ A C. B ) -> A ~< B ) |
|
| 3 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
| 4 | 2 3 | syl | |- ( ( B e. Fin /\ A C. B ) -> -. A ~~ B ) |
| 5 | 4 | ex | |- ( B e. Fin -> ( A C. B -> -. A ~~ B ) ) |
| 6 | 1 5 | biimtrrid | |- ( B e. Fin -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) |
| 7 | 6 | adantl | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B /\ -. A = B ) -> -. A ~~ B ) ) |
| 8 | 7 | expd | |- ( ( A e. Fin /\ B e. Fin ) -> ( A C_ B -> ( -. A = B -> -. A ~~ B ) ) ) |
| 9 | dfpss2 | |- ( B C. A <-> ( B C_ A /\ -. B = A ) ) |
|
| 10 | eqcom | |- ( B = A <-> A = B ) |
|
| 11 | 10 | notbii | |- ( -. B = A <-> -. A = B ) |
| 12 | 11 | anbi2i | |- ( ( B C_ A /\ -. B = A ) <-> ( B C_ A /\ -. A = B ) ) |
| 13 | 9 12 | bitri | |- ( B C. A <-> ( B C_ A /\ -. A = B ) ) |
| 14 | php3 | |- ( ( A e. Fin /\ B C. A ) -> B ~< A ) |
|
| 15 | sdomnen | |- ( B ~< A -> -. B ~~ A ) |
|
| 16 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 17 | 15 16 | nsyl | |- ( B ~< A -> -. A ~~ B ) |
| 18 | 14 17 | syl | |- ( ( A e. Fin /\ B C. A ) -> -. A ~~ B ) |
| 19 | 18 | ex | |- ( A e. Fin -> ( B C. A -> -. A ~~ B ) ) |
| 20 | 13 19 | biimtrrid | |- ( A e. Fin -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) |
| 21 | 20 | adantr | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( B C_ A /\ -. A = B ) -> -. A ~~ B ) ) |
| 22 | 21 | expd | |- ( ( A e. Fin /\ B e. Fin ) -> ( B C_ A -> ( -. A = B -> -. A ~~ B ) ) ) |
| 23 | 8 22 | jaod | |- ( ( A e. Fin /\ B e. Fin ) -> ( ( A C_ B \/ B C_ A ) -> ( -. A = B -> -. A ~~ B ) ) ) |
| 24 | 23 | 3impia | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( -. A = B -> -. A ~~ B ) ) |
| 25 | 24 | con4d | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B -> A = B ) ) |
| 26 | eqeng | |- ( A e. Fin -> ( A = B -> A ~~ B ) ) |
|
| 27 | 26 | 3ad2ant1 | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A = B -> A ~~ B ) ) |
| 28 | 25 27 | impbid | |- ( ( A e. Fin /\ B e. Fin /\ ( A C_ B \/ B C_ A ) ) -> ( A ~~ B <-> A = B ) ) |