This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f1owe.1 | |- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
|
| Assertion | f1owe | |- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1owe.1 | |- R = { <. x , y >. | ( F ` x ) S ( F ` y ) } |
|
| 2 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 3 | 2 | breq1d | |- ( x = z -> ( ( F ` x ) S ( F ` y ) <-> ( F ` z ) S ( F ` y ) ) ) |
| 4 | fveq2 | |- ( y = w -> ( F ` y ) = ( F ` w ) ) |
|
| 5 | 4 | breq2d | |- ( y = w -> ( ( F ` z ) S ( F ` y ) <-> ( F ` z ) S ( F ` w ) ) ) |
| 6 | 3 5 1 | brabg | |- ( ( z e. A /\ w e. A ) -> ( z R w <-> ( F ` z ) S ( F ` w ) ) ) |
| 7 | 6 | rgen2 | |- A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) |
| 8 | df-isom | |- ( F Isom R , S ( A , B ) <-> ( F : A -1-1-onto-> B /\ A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) ) ) |
|
| 9 | isowe | |- ( F Isom R , S ( A , B ) -> ( R We A <-> S We B ) ) |
|
| 10 | 8 9 | sylbir | |- ( ( F : A -1-1-onto-> B /\ A. z e. A A. w e. A ( z R w <-> ( F ` z ) S ( F ` w ) ) ) -> ( R We A <-> S We B ) ) |
| 11 | 7 10 | mpan2 | |- ( F : A -1-1-onto-> B -> ( R We A <-> S We B ) ) |
| 12 | 11 | biimprd | |- ( F : A -1-1-onto-> B -> ( S We B -> R We A ) ) |