This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for expaddz . (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expaddzlem | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A e. CC ) |
|
| 2 | simp3 | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 3 | expcl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
| 5 | simp2r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN ) |
|
| 6 | 5 | nnnn0d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. NN0 ) |
| 7 | expcl | |- ( ( A e. CC /\ -u M e. NN0 ) -> ( A ^ -u M ) e. CC ) |
|
| 8 | 1 6 7 | syl2anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) e. CC ) |
| 9 | simp1r | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> A =/= 0 ) |
|
| 10 | 5 | nnzd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. ZZ ) |
| 11 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ -u M e. ZZ ) -> ( A ^ -u M ) =/= 0 ) |
|
| 12 | 1 9 10 11 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u M ) =/= 0 ) |
| 13 | 4 8 12 | divrec2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( A ^ N ) / ( A ^ -u M ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( A ^ N ) ) ) |
| 14 | simp2l | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. RR ) |
|
| 15 | 14 | recnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. CC ) |
| 16 | 15 | negnegd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u -u M = M ) |
| 17 | nnnegz | |- ( -u M e. NN -> -u -u M e. ZZ ) |
|
| 18 | 5 17 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u -u M e. ZZ ) |
| 19 | 16 18 | eqeltrrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> M e. ZZ ) |
| 20 | 2 | nn0zd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. ZZ ) |
| 21 | 19 20 | zaddcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( M + N ) e. ZZ ) |
| 22 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ ( M + N ) e. ZZ ) -> ( A ^ ( M + N ) ) e. CC ) |
|
| 23 | 1 9 21 22 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) e. CC ) |
| 24 | 23 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) e. CC ) |
| 25 | 8 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ -u M ) e. CC ) |
| 26 | 12 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ -u M ) =/= 0 ) |
| 27 | 24 25 26 | divcan4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) / ( A ^ -u M ) ) = ( A ^ ( M + N ) ) ) |
| 28 | 1 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> A e. CC ) |
| 29 | simpr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( M + N ) e. NN0 ) |
|
| 30 | 6 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> -u M e. NN0 ) |
| 31 | expadd | |- ( ( A e. CC /\ ( M + N ) e. NN0 /\ -u M e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) ) |
|
| 32 | 28 29 30 31 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) ) |
| 33 | 21 | zcnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( M + N ) e. CC ) |
| 34 | 33 15 | negsubd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) + -u M ) = ( ( M + N ) - M ) ) |
| 35 | 2 | nn0cnd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> N e. CC ) |
| 36 | 15 35 | pncan2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) - M ) = N ) |
| 37 | 34 36 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) + -u M ) = N ) |
| 38 | 37 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( M + N ) + -u M ) = N ) |
| 39 | 38 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( ( M + N ) + -u M ) ) = ( A ^ N ) ) |
| 40 | 32 39 | eqtr3d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) = ( A ^ N ) ) |
| 41 | 40 | oveq1d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( ( ( A ^ ( M + N ) ) x. ( A ^ -u M ) ) / ( A ^ -u M ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 42 | 27 41 | eqtr3d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 43 | 1 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> A e. CC ) |
| 44 | 33 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( M + N ) e. CC ) |
| 45 | simpr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> -u ( M + N ) e. NN0 ) |
|
| 46 | expneg2 | |- ( ( A e. CC /\ ( M + N ) e. CC /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
|
| 47 | 43 44 45 46 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( 1 / ( A ^ -u ( M + N ) ) ) ) |
| 48 | 21 | znegcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u ( M + N ) e. ZZ ) |
| 49 | expclz | |- ( ( A e. CC /\ A =/= 0 /\ -u ( M + N ) e. ZZ ) -> ( A ^ -u ( M + N ) ) e. CC ) |
|
| 50 | 1 9 48 49 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ -u ( M + N ) ) e. CC ) |
| 51 | 50 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ -u ( M + N ) ) e. CC ) |
| 52 | 4 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ N ) e. CC ) |
| 53 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
|
| 54 | 1 9 20 53 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ N ) =/= 0 ) |
| 55 | 54 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ N ) =/= 0 ) |
| 56 | 51 52 55 | divcan4d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) / ( A ^ N ) ) = ( A ^ -u ( M + N ) ) ) |
| 57 | 2 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> N e. NN0 ) |
| 58 | expadd | |- ( ( A e. CC /\ -u ( M + N ) e. NN0 /\ N e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) ) |
|
| 59 | 43 45 57 58 | syl3anc | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) ) |
| 60 | 15 35 | negdi2d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u ( M + N ) = ( -u M - N ) ) |
| 61 | 60 | oveq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u ( M + N ) + N ) = ( ( -u M - N ) + N ) ) |
| 62 | 15 | negcld | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> -u M e. CC ) |
| 63 | 62 35 | npcand | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( -u M - N ) + N ) = -u M ) |
| 64 | 61 63 | eqtrd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( -u ( M + N ) + N ) = -u M ) |
| 65 | 64 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( -u ( M + N ) + N ) = -u M ) |
| 66 | 65 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( -u ( M + N ) + N ) ) = ( A ^ -u M ) ) |
| 67 | 59 66 | eqtr3d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) = ( A ^ -u M ) ) |
| 68 | 67 | oveq1d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( ( ( A ^ -u ( M + N ) ) x. ( A ^ N ) ) / ( A ^ N ) ) = ( ( A ^ -u M ) / ( A ^ N ) ) ) |
| 69 | 56 68 | eqtr3d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ -u ( M + N ) ) = ( ( A ^ -u M ) / ( A ^ N ) ) ) |
| 70 | 69 | oveq2d | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) ) |
| 71 | 8 4 12 54 | recdivd | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 72 | 71 | adantr | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( ( A ^ -u M ) / ( A ^ N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 73 | 70 72 | eqtrd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( 1 / ( A ^ -u ( M + N ) ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 74 | 47 73 | eqtrd | |- ( ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) /\ -u ( M + N ) e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 75 | elznn0 | |- ( ( M + N ) e. ZZ <-> ( ( M + N ) e. RR /\ ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) ) |
|
| 76 | 75 | simprbi | |- ( ( M + N ) e. ZZ -> ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) |
| 77 | 21 76 | syl | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( M + N ) e. NN0 \/ -u ( M + N ) e. NN0 ) ) |
| 78 | 42 74 77 | mpjaodan | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ N ) / ( A ^ -u M ) ) ) |
| 79 | expneg2 | |- ( ( A e. CC /\ M e. CC /\ -u M e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
|
| 80 | 1 15 6 79 | syl3anc | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ M ) = ( 1 / ( A ^ -u M ) ) ) |
| 81 | 80 | oveq1d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( ( A ^ M ) x. ( A ^ N ) ) = ( ( 1 / ( A ^ -u M ) ) x. ( A ^ N ) ) ) |
| 82 | 13 78 81 | 3eqtr4d | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. RR /\ -u M e. NN ) /\ N e. NN0 ) -> ( A ^ ( M + N ) ) = ( ( A ^ M ) x. ( A ^ N ) ) ) |