This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for expaddz . (Contributed by Mario Carneiro, 4-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expaddzlem | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 2 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 3 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 5 | simp2r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ ) | |
| 6 | 5 | nnnn0d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 7 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 9 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ≠ 0 ) | |
| 10 | 5 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℤ ) |
| 11 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - 𝑀 ∈ ℤ ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) | |
| 12 | 1 9 10 11 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 13 | 4 8 12 | divrec2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 14 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) | |
| 15 | 14 | recnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 16 | 15 | negnegd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - - 𝑀 = 𝑀 ) |
| 17 | nnnegz | ⊢ ( - 𝑀 ∈ ℕ → - - 𝑀 ∈ ℤ ) | |
| 18 | 5 17 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - - 𝑀 ∈ ℤ ) |
| 19 | 16 18 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 20 | 2 | nn0zd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 21 | 19 20 | zaddcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 22 | expclz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) | |
| 23 | 1 9 21 22 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 24 | 23 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 25 | 8 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ∈ ℂ ) |
| 26 | 12 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑀 ) ≠ 0 ) |
| 27 | 24 25 26 | divcan4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) / ( 𝐴 ↑ - 𝑀 ) ) = ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) ) |
| 28 | 1 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 29 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) | |
| 30 | 6 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑀 ∈ ℕ0 ) |
| 31 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) ) | |
| 32 | 28 29 30 31 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) ) |
| 33 | 21 | zcnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℂ ) |
| 34 | 33 15 | negsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = ( ( 𝑀 + 𝑁 ) − 𝑀 ) ) |
| 35 | 2 | nn0cnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 36 | 15 35 | pncan2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) − 𝑀 ) = 𝑁 ) |
| 37 | 34 36 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = 𝑁 ) |
| 38 | 37 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) + - 𝑀 ) = 𝑁 ) |
| 39 | 38 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( ( 𝑀 + 𝑁 ) + - 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 40 | 32 39 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 41 | 40 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ - 𝑀 ) ) / ( 𝐴 ↑ - 𝑀 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 42 | 27 41 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 43 | 1 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 44 | 33 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℂ ) |
| 45 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) | |
| 46 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑀 + 𝑁 ) ∈ ℂ ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) | |
| 47 | 43 44 45 46 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) ) |
| 48 | 21 | znegcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 49 | expclz | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ - ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) | |
| 50 | 1 9 48 49 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ∈ ℂ ) |
| 52 | 4 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) |
| 53 | expne0i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) | |
| 54 | 1 9 20 53 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 55 | 54 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ≠ 0 ) |
| 56 | 51 52 55 | divcan4d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) / ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) |
| 57 | 2 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
| 58 | expadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) | |
| 59 | 43 45 57 58 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 60 | 15 35 | negdi2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) = ( - 𝑀 − 𝑁 ) ) |
| 61 | 60 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = ( ( - 𝑀 − 𝑁 ) + 𝑁 ) ) |
| 62 | 15 | negcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → - 𝑀 ∈ ℂ ) |
| 63 | 62 35 | npcand | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( - 𝑀 − 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 64 | 61 63 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) + 𝑁 ) = - 𝑀 ) |
| 66 | 65 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( - ( 𝑀 + 𝑁 ) + 𝑁 ) ) = ( 𝐴 ↑ - 𝑀 ) ) |
| 67 | 59 66 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ - 𝑀 ) ) |
| 68 | 67 | oveq1d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) · ( 𝐴 ↑ 𝑁 ) ) / ( 𝐴 ↑ 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| 69 | 56 68 | eqtr3d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) |
| 70 | 69 | oveq2d | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 71 | 8 4 12 54 | recdivd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( ( 𝐴 ↑ - 𝑀 ) / ( 𝐴 ↑ 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 73 | 70 72 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 1 / ( 𝐴 ↑ - ( 𝑀 + 𝑁 ) ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 74 | 47 73 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 75 | elznn0 | ⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) ) | |
| 76 | 75 | simprbi | ⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 77 | 21 76 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 78 | 42 74 77 | mpjaodan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑁 ) / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 79 | expneg2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ - 𝑀 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) | |
| 80 | 1 15 6 79 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑀 ) = ( 1 / ( 𝐴 ↑ - 𝑀 ) ) ) |
| 81 | 80 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) = ( ( 1 / ( 𝐴 ↑ - 𝑀 ) ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 82 | 13 78 81 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝑀 ∈ ℝ ∧ - 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑀 + 𝑁 ) ) = ( ( 𝐴 ↑ 𝑀 ) · ( 𝐴 ↑ 𝑁 ) ) ) |