This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | |- X = ran G |
|
| exidres.2 | |- U = ( GId ` G ) |
||
| exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
||
| Assertion | exidresid | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( GId ` H ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | |- X = ran G |
|
| 2 | exidres.2 | |- U = ( GId ` G ) |
|
| 3 | exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
|
| 4 | resexg | |- ( G e. ( Magma i^i ExId ) -> ( G |` ( Y X. Y ) ) e. _V ) |
|
| 5 | 3 4 | eqeltrid | |- ( G e. ( Magma i^i ExId ) -> H e. _V ) |
| 6 | eqid | |- ran H = ran H |
|
| 7 | 6 | gidval | |- ( H e. _V -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 8 | 5 7 | syl | |- ( G e. ( Magma i^i ExId ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 10 | 9 | adantr | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( GId ` H ) = ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 11 | 1 2 3 | exidreslem | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
| 12 | 11 | simprd | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 13 | 12 | adantr | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 14 | 1 2 3 | exidres | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> H e. ExId ) |
| 15 | elin | |- ( H e. ( Magma i^i ExId ) <-> ( H e. Magma /\ H e. ExId ) ) |
|
| 16 | rngopidOLD | |- ( H e. ( Magma i^i ExId ) -> ran H = dom dom H ) |
|
| 17 | 15 16 | sylbir | |- ( ( H e. Magma /\ H e. ExId ) -> ran H = dom dom H ) |
| 18 | 17 | ancoms | |- ( ( H e. ExId /\ H e. Magma ) -> ran H = dom dom H ) |
| 19 | 14 18 | sylan | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ran H = dom dom H ) |
| 20 | 13 19 | raleqtrrdv | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) ) |
| 21 | 11 | simpld | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> U e. dom dom H ) |
| 22 | 21 | adantr | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> U e. dom dom H ) |
| 23 | 22 19 | eleqtrrd | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> U e. ran H ) |
| 24 | 6 | exidu1 | |- ( H e. ( Magma i^i ExId ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 25 | 15 24 | sylbir | |- ( ( H e. Magma /\ H e. ExId ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 26 | 25 | ancoms | |- ( ( H e. ExId /\ H e. Magma ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 27 | 14 26 | sylan | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 28 | oveq1 | |- ( u = U -> ( u H x ) = ( U H x ) ) |
|
| 29 | 28 | eqeq1d | |- ( u = U -> ( ( u H x ) = x <-> ( U H x ) = x ) ) |
| 30 | 29 | ovanraleqv | |- ( u = U -> ( A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
| 31 | 30 | riota2 | |- ( ( U e. ran H /\ E! u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) -> ( A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) ) |
| 32 | 23 27 31 | syl2anc | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( A. x e. ran H ( ( U H x ) = x /\ ( x H U ) = x ) <-> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) ) |
| 33 | 20 32 | mpbid | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( iota_ u e. ran H A. x e. ran H ( ( u H x ) = x /\ ( x H u ) = x ) ) = U ) |
| 34 | 10 33 | eqtrd | |- ( ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) /\ H e. Magma ) -> ( GId ` H ) = U ) |