This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmpidelt.1 | |- X = ran G |
|
| cmpidelt.2 | |- U = ( GId ` G ) |
||
| Assertion | cmpidelt | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X ) -> ( ( U G A ) = A /\ ( A G U ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmpidelt.1 | |- X = ran G |
|
| 2 | cmpidelt.2 | |- U = ( GId ` G ) |
|
| 3 | 1 2 | idrval | |- ( G e. ( Magma i^i ExId ) -> U = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 4 | 3 | eqcomd | |- ( G e. ( Magma i^i ExId ) -> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) |
| 5 | 1 2 | iorlid | |- ( G e. ( Magma i^i ExId ) -> U e. X ) |
| 6 | 1 | exidu1 | |- ( G e. ( Magma i^i ExId ) -> E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| 7 | oveq1 | |- ( u = U -> ( u G x ) = ( U G x ) ) |
|
| 8 | 7 | eqeq1d | |- ( u = U -> ( ( u G x ) = x <-> ( U G x ) = x ) ) |
| 9 | 8 | ovanraleqv | |- ( u = U -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) ) ) |
| 10 | 9 | riota2 | |- ( ( U e. X /\ E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) -> ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) ) |
| 11 | 5 6 10 | syl2anc | |- ( G e. ( Magma i^i ExId ) -> ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) = U ) ) |
| 12 | 4 11 | mpbird | |- ( G e. ( Magma i^i ExId ) -> A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) ) |
| 13 | oveq2 | |- ( x = A -> ( U G x ) = ( U G A ) ) |
|
| 14 | id | |- ( x = A -> x = A ) |
|
| 15 | 13 14 | eqeq12d | |- ( x = A -> ( ( U G x ) = x <-> ( U G A ) = A ) ) |
| 16 | oveq1 | |- ( x = A -> ( x G U ) = ( A G U ) ) |
|
| 17 | 16 14 | eqeq12d | |- ( x = A -> ( ( x G U ) = x <-> ( A G U ) = A ) ) |
| 18 | 15 17 | anbi12d | |- ( x = A -> ( ( ( U G x ) = x /\ ( x G U ) = x ) <-> ( ( U G A ) = A /\ ( A G U ) = A ) ) ) |
| 19 | 18 | rspccva | |- ( ( A. x e. X ( ( U G x ) = x /\ ( x G U ) = x ) /\ A e. X ) -> ( ( U G A ) = A /\ ( A G U ) = A ) ) |
| 20 | 12 19 | sylan | |- ( ( G e. ( Magma i^i ExId ) /\ A e. X ) -> ( ( U G A ) = A /\ ( A G U ) = A ) ) |