This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | exidres.1 | |- X = ran G |
|
| exidres.2 | |- U = ( GId ` G ) |
||
| exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
||
| Assertion | exidres | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> H e. ExId ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidres.1 | |- X = ran G |
|
| 2 | exidres.2 | |- U = ( GId ` G ) |
|
| 3 | exidres.3 | |- H = ( G |` ( Y X. Y ) ) |
|
| 4 | 1 2 3 | exidreslem | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
| 5 | oveq1 | |- ( u = U -> ( u H x ) = ( U H x ) ) |
|
| 6 | 5 | eqeq1d | |- ( u = U -> ( ( u H x ) = x <-> ( U H x ) = x ) ) |
| 7 | 6 | ovanraleqv | |- ( u = U -> ( A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) <-> A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) ) |
| 8 | 7 | rspcev | |- ( ( U e. dom dom H /\ A. x e. dom dom H ( ( U H x ) = x /\ ( x H U ) = x ) ) -> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 9 | 4 8 | syl | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) |
| 10 | resexg | |- ( G e. ( Magma i^i ExId ) -> ( G |` ( Y X. Y ) ) e. _V ) |
|
| 11 | 3 10 | eqeltrid | |- ( G e. ( Magma i^i ExId ) -> H e. _V ) |
| 12 | eqid | |- dom dom H = dom dom H |
|
| 13 | 12 | isexid | |- ( H e. _V -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 14 | 11 13 | syl | |- ( G e. ( Magma i^i ExId ) -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 15 | 14 | 3ad2ant1 | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> ( H e. ExId <-> E. u e. dom dom H A. x e. dom dom H ( ( u H x ) = x /\ ( x H u ) = x ) ) ) |
| 16 | 9 15 | mpbird | |- ( ( G e. ( Magma i^i ExId ) /\ Y C_ X /\ U e. Y ) -> H e. ExId ) |