This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mndpfo as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opidon2OLD.1 | |- X = ran G |
|
| Assertion | opidon2OLD | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opidon2OLD.1 | |- X = ran G |
|
| 2 | eqid | |- dom dom G = dom dom G |
|
| 3 | 2 | opidonOLD | |- ( G e. ( Magma i^i ExId ) -> G : ( dom dom G X. dom dom G ) -onto-> dom dom G ) |
| 4 | forn | |- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> ran G = dom dom G ) |
|
| 5 | 1 4 | eqtr2id | |- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> dom dom G = X ) |
| 6 | xpeq12 | |- ( ( dom dom G = X /\ dom dom G = X ) -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
|
| 7 | 6 | anidms | |- ( dom dom G = X -> ( dom dom G X. dom dom G ) = ( X X. X ) ) |
| 8 | foeq2 | |- ( ( dom dom G X. dom dom G ) = ( X X. X ) -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
|
| 9 | 7 8 | syl | |- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> dom dom G ) ) |
| 10 | foeq3 | |- ( dom dom G = X -> ( G : ( X X. X ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
|
| 11 | 9 10 | bitrd | |- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G <-> G : ( X X. X ) -onto-> X ) ) |
| 12 | 11 | biimpd | |- ( dom dom G = X -> ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) ) |
| 13 | 5 12 | mpcom | |- ( G : ( dom dom G X. dom dom G ) -onto-> dom dom G -> G : ( X X. X ) -onto-> X ) |
| 14 | 3 13 | syl | |- ( G e. ( Magma i^i ExId ) -> G : ( X X. X ) -onto-> X ) |