This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gidval.1 | |- X = ran G |
|
| Assertion | gidval | |- ( G e. V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gidval.1 | |- X = ran G |
|
| 2 | elex | |- ( G e. V -> G e. _V ) |
|
| 3 | rneq | |- ( g = G -> ran g = ran G ) |
|
| 4 | 3 1 | eqtr4di | |- ( g = G -> ran g = X ) |
| 5 | oveq | |- ( g = G -> ( u g x ) = ( u G x ) ) |
|
| 6 | 5 | eqeq1d | |- ( g = G -> ( ( u g x ) = x <-> ( u G x ) = x ) ) |
| 7 | oveq | |- ( g = G -> ( x g u ) = ( x G u ) ) |
|
| 8 | 7 | eqeq1d | |- ( g = G -> ( ( x g u ) = x <-> ( x G u ) = x ) ) |
| 9 | 6 8 | anbi12d | |- ( g = G -> ( ( ( u g x ) = x /\ ( x g u ) = x ) <-> ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 10 | 4 9 | raleqbidv | |- ( g = G -> ( A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) <-> A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 11 | 4 10 | riotaeqbidv | |- ( g = G -> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 12 | df-gid | |- GId = ( g e. _V |-> ( iota_ u e. ran g A. x e. ran g ( ( u g x ) = x /\ ( x g u ) = x ) ) ) |
|
| 13 | riotaex | |- ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( G e. _V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |
| 15 | 2 14 | syl | |- ( G e. V -> ( GId ` G ) = ( iota_ u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) ) |