This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abl4pnp.1 | |- X = ran G |
|
| abl4pnp.2 | |- D = ( /g ` G ) |
||
| Assertion | ablo4pnp | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( A G B ) D ( C G F ) ) = ( ( A D C ) G ( B D F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl4pnp.1 | |- X = ran G |
|
| 2 | abl4pnp.2 | |- D = ( /g ` G ) |
|
| 3 | df-3an | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( ( A e. X /\ B e. X ) /\ C e. X ) ) |
|
| 4 | 1 2 | ablomuldiv | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |
| 5 | 3 4 | sylan2br | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ C e. X ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |
| 6 | 5 | adantrrr | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( A G B ) D C ) = ( ( A D C ) G B ) ) |
| 7 | 6 | oveq1d | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( ( A G B ) D C ) D F ) = ( ( ( A D C ) G B ) D F ) ) |
| 8 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 9 | 1 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 10 | 9 | 3expib | |- ( G e. GrpOp -> ( ( A e. X /\ B e. X ) -> ( A G B ) e. X ) ) |
| 11 | 8 10 | syl | |- ( G e. AbelOp -> ( ( A e. X /\ B e. X ) -> ( A G B ) e. X ) ) |
| 12 | 11 | anim1d | |- ( G e. AbelOp -> ( ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) -> ( ( A G B ) e. X /\ ( C e. X /\ F e. X ) ) ) ) |
| 13 | 3anass | |- ( ( ( A G B ) e. X /\ C e. X /\ F e. X ) <-> ( ( A G B ) e. X /\ ( C e. X /\ F e. X ) ) ) |
|
| 14 | 12 13 | imbitrrdi | |- ( G e. AbelOp -> ( ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) -> ( ( A G B ) e. X /\ C e. X /\ F e. X ) ) ) |
| 15 | 14 | imp | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( A G B ) e. X /\ C e. X /\ F e. X ) ) |
| 16 | 1 2 | ablodivdiv4 | |- ( ( G e. AbelOp /\ ( ( A G B ) e. X /\ C e. X /\ F e. X ) ) -> ( ( ( A G B ) D C ) D F ) = ( ( A G B ) D ( C G F ) ) ) |
| 17 | 15 16 | syldan | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( ( A G B ) D C ) D F ) = ( ( A G B ) D ( C G F ) ) ) |
| 18 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
| 19 | 18 | 3expib | |- ( G e. GrpOp -> ( ( A e. X /\ C e. X ) -> ( A D C ) e. X ) ) |
| 20 | 19 | anim1d | |- ( G e. GrpOp -> ( ( ( A e. X /\ C e. X ) /\ ( B e. X /\ F e. X ) ) -> ( ( A D C ) e. X /\ ( B e. X /\ F e. X ) ) ) ) |
| 21 | an4 | |- ( ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) <-> ( ( A e. X /\ C e. X ) /\ ( B e. X /\ F e. X ) ) ) |
|
| 22 | 3anass | |- ( ( ( A D C ) e. X /\ B e. X /\ F e. X ) <-> ( ( A D C ) e. X /\ ( B e. X /\ F e. X ) ) ) |
|
| 23 | 20 21 22 | 3imtr4g | |- ( G e. GrpOp -> ( ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) -> ( ( A D C ) e. X /\ B e. X /\ F e. X ) ) ) |
| 24 | 23 | imp | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( A D C ) e. X /\ B e. X /\ F e. X ) ) |
| 25 | 1 2 | grpomuldivass | |- ( ( G e. GrpOp /\ ( ( A D C ) e. X /\ B e. X /\ F e. X ) ) -> ( ( ( A D C ) G B ) D F ) = ( ( A D C ) G ( B D F ) ) ) |
| 26 | 24 25 | syldan | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( ( A D C ) G B ) D F ) = ( ( A D C ) G ( B D F ) ) ) |
| 27 | 8 26 | sylan | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( ( A D C ) G B ) D F ) = ( ( A D C ) G ( B D F ) ) ) |
| 28 | 7 17 27 | 3eqtr3d | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ F e. X ) ) ) -> ( ( A G B ) D ( C G F ) ) = ( ( A D C ) G ( B D F ) ) ) |