This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | exidu1.1 | |- X = ran G |
|
| Assertion | exidu1 | |- ( G e. ( Magma i^i ExId ) -> E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exidu1.1 | |- X = ran G |
|
| 2 | 1 | isexid2 | |- ( G e. ( Magma i^i ExId ) -> E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |
| 3 | simpl | |- ( ( ( u G x ) = x /\ ( x G u ) = x ) -> ( u G x ) = x ) |
|
| 4 | 3 | ralimi | |- ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> A. x e. X ( u G x ) = x ) |
| 5 | oveq2 | |- ( x = y -> ( u G x ) = ( u G y ) ) |
|
| 6 | id | |- ( x = y -> x = y ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = y -> ( ( u G x ) = x <-> ( u G y ) = y ) ) |
| 8 | 7 | rspcv | |- ( y e. X -> ( A. x e. X ( u G x ) = x -> ( u G y ) = y ) ) |
| 9 | 4 8 | syl5 | |- ( y e. X -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) -> ( u G y ) = y ) ) |
| 10 | simpr | |- ( ( ( y G x ) = x /\ ( x G y ) = x ) -> ( x G y ) = x ) |
|
| 11 | 10 | ralimi | |- ( A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) -> A. x e. X ( x G y ) = x ) |
| 12 | oveq1 | |- ( x = u -> ( x G y ) = ( u G y ) ) |
|
| 13 | id | |- ( x = u -> x = u ) |
|
| 14 | 12 13 | eqeq12d | |- ( x = u -> ( ( x G y ) = x <-> ( u G y ) = u ) ) |
| 15 | 14 | rspcv | |- ( u e. X -> ( A. x e. X ( x G y ) = x -> ( u G y ) = u ) ) |
| 16 | 11 15 | syl5 | |- ( u e. X -> ( A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) -> ( u G y ) = u ) ) |
| 17 | 9 16 | im2anan9r | |- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) ) -> ( ( u G y ) = y /\ ( u G y ) = u ) ) ) |
| 18 | eqtr2 | |- ( ( ( u G y ) = y /\ ( u G y ) = u ) -> y = u ) |
|
| 19 | 18 | equcomd | |- ( ( ( u G y ) = y /\ ( u G y ) = u ) -> u = y ) |
| 20 | 17 19 | syl6 | |- ( ( u e. X /\ y e. X ) -> ( ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) ) -> u = y ) ) |
| 21 | 20 | rgen2 | |- A. u e. X A. y e. X ( ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) ) -> u = y ) |
| 22 | oveq1 | |- ( u = y -> ( u G x ) = ( y G x ) ) |
|
| 23 | 22 | eqeq1d | |- ( u = y -> ( ( u G x ) = x <-> ( y G x ) = x ) ) |
| 24 | 23 | ovanraleqv | |- ( u = y -> ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) ) ) |
| 25 | 24 | reu4 | |- ( E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) <-> ( E. u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ A. u e. X A. y e. X ( ( A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) /\ A. x e. X ( ( y G x ) = x /\ ( x G y ) = x ) ) -> u = y ) ) ) |
| 26 | 2 21 25 | sylanblrc | |- ( G e. ( Magma i^i ExId ) -> E! u e. X A. x e. X ( ( u G x ) = x /\ ( x G u ) = x ) ) |