This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Combine ivthicc with evthicc to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthicc.1 | |- ( ph -> A e. RR ) |
|
| evthicc.2 | |- ( ph -> B e. RR ) |
||
| evthicc.3 | |- ( ph -> A <_ B ) |
||
| evthicc.4 | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| Assertion | evthicc2 | |- ( ph -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | evthicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | evthicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | evthicc.4 | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | 1 2 3 4 | evthicc | |- ( ph -> ( E. a e. ( A [,] B ) A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ E. b e. ( A [,] B ) A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) ) |
| 6 | reeanv | |- ( E. a e. ( A [,] B ) E. b e. ( A [,] B ) ( A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) <-> ( E. a e. ( A [,] B ) A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ E. b e. ( A [,] B ) A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) ) |
|
| 7 | 5 6 | sylibr | |- ( ph -> E. a e. ( A [,] B ) E. b e. ( A [,] B ) ( A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) ) |
| 8 | r19.26 | |- ( A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) <-> ( A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) ) |
|
| 9 | 4 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 10 | cncff | |- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
|
| 11 | 9 10 | syl | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> F : ( A [,] B ) --> RR ) |
| 12 | simprr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> b e. ( A [,] B ) ) |
|
| 13 | 11 12 | ffvelcdmd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` b ) e. RR ) |
| 14 | 13 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> ( F ` b ) e. RR ) |
| 15 | simprl | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> a e. ( A [,] B ) ) |
|
| 16 | 11 15 | ffvelcdmd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` a ) e. RR ) |
| 17 | 16 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> ( F ` a ) e. RR ) |
| 18 | 11 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> F : ( A [,] B ) --> RR ) |
| 19 | 18 | ffnd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> F Fn ( A [,] B ) ) |
| 20 | 16 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( F ` a ) e. RR ) |
| 21 | elicc2 | |- ( ( ( F ` b ) e. RR /\ ( F ` a ) e. RR ) -> ( ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) <-> ( ( F ` z ) e. RR /\ ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) |
|
| 22 | 13 20 21 | syl2an2r | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) <-> ( ( F ` z ) e. RR /\ ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) |
| 23 | 3anass | |- ( ( ( F ` z ) e. RR /\ ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) <-> ( ( F ` z ) e. RR /\ ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) |
|
| 24 | 22 23 | bitrdi | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) <-> ( ( F ` z ) e. RR /\ ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) ) |
| 25 | ancom | |- ( ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) <-> ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) |
|
| 26 | 11 | ffvelcdmda | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( F ` z ) e. RR ) |
| 27 | 26 | biantrurd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) <-> ( ( F ` z ) e. RR /\ ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) ) |
| 28 | 25 27 | bitrid | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) <-> ( ( F ` z ) e. RR /\ ( ( F ` b ) <_ ( F ` z ) /\ ( F ` z ) <_ ( F ` a ) ) ) ) ) |
| 29 | 24 28 | bitr4d | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ z e. ( A [,] B ) ) -> ( ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) <-> ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) ) |
| 30 | 29 | ralbidva | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( A. z e. ( A [,] B ) ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) <-> A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) ) |
| 31 | 30 | biimpar | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> A. z e. ( A [,] B ) ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) ) |
| 32 | ffnfv | |- ( F : ( A [,] B ) --> ( ( F ` b ) [,] ( F ` a ) ) <-> ( F Fn ( A [,] B ) /\ A. z e. ( A [,] B ) ( F ` z ) e. ( ( F ` b ) [,] ( F ` a ) ) ) ) |
|
| 33 | 19 31 32 | sylanbrc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> F : ( A [,] B ) --> ( ( F ` b ) [,] ( F ` a ) ) ) |
| 34 | 33 | frnd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> ran F C_ ( ( F ` b ) [,] ( F ` a ) ) ) |
| 35 | 1 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> A e. RR ) |
| 36 | 2 | adantr | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> B e. RR ) |
| 37 | ssidd | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( A [,] B ) C_ ( A [,] B ) ) |
|
| 38 | ax-resscn | |- RR C_ CC |
|
| 39 | ssid | |- CC C_ CC |
|
| 40 | cncfss | |- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) ) |
|
| 41 | 38 39 40 | mp2an | |- ( ( A [,] B ) -cn-> RR ) C_ ( ( A [,] B ) -cn-> CC ) |
| 42 | 41 9 | sselid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 43 | 11 | ffvelcdmda | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. RR ) |
| 44 | 35 36 12 15 37 42 43 | ivthicc | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( F ` b ) [,] ( F ` a ) ) C_ ran F ) |
| 45 | 44 | adantr | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> ( ( F ` b ) [,] ( F ` a ) ) C_ ran F ) |
| 46 | 34 45 | eqssd | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> ran F = ( ( F ` b ) [,] ( F ` a ) ) ) |
| 47 | rspceov | |- ( ( ( F ` b ) e. RR /\ ( F ` a ) e. RR /\ ran F = ( ( F ` b ) [,] ( F ` a ) ) ) -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) |
|
| 48 | 14 17 46 47 | syl3anc | |- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) /\ A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) ) -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) |
| 49 | 48 | ex | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( A. z e. ( A [,] B ) ( ( F ` z ) <_ ( F ` a ) /\ ( F ` b ) <_ ( F ` z ) ) -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) ) |
| 50 | 8 49 | biimtrrid | |- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) ) |
| 51 | 50 | rexlimdvva | |- ( ph -> ( E. a e. ( A [,] B ) E. b e. ( A [,] B ) ( A. z e. ( A [,] B ) ( F ` z ) <_ ( F ` a ) /\ A. z e. ( A [,] B ) ( F ` b ) <_ ( F ` z ) ) -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) ) |
| 52 | 7 51 | mpd | |- ( ph -> E. x e. RR E. y e. RR ran F = ( x [,] y ) ) |