This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007) (Revised by Mario Carneiro, 7-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmet.1 | |- C = ( ( abs o. - ) |` ( A X. A ) ) |
|
| cncfmet.2 | |- D = ( ( abs o. - ) |` ( B X. B ) ) |
||
| cncfmet.3 | |- J = ( MetOpen ` C ) |
||
| cncfmet.4 | |- K = ( MetOpen ` D ) |
||
| Assertion | cncfmet | |- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmet.1 | |- C = ( ( abs o. - ) |` ( A X. A ) ) |
|
| 2 | cncfmet.2 | |- D = ( ( abs o. - ) |` ( B X. B ) ) |
|
| 3 | cncfmet.3 | |- J = ( MetOpen ` C ) |
|
| 4 | cncfmet.4 | |- K = ( MetOpen ` D ) |
|
| 5 | simplll | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> A C_ CC ) |
|
| 6 | simprl | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> x e. A ) |
|
| 7 | simprr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> w e. A ) |
|
| 8 | 1 | oveqi | |- ( x C w ) = ( x ( ( abs o. - ) |` ( A X. A ) ) w ) |
| 9 | ovres | |- ( ( x e. A /\ w e. A ) -> ( x ( ( abs o. - ) |` ( A X. A ) ) w ) = ( x ( abs o. - ) w ) ) |
|
| 10 | 8 9 | eqtrid | |- ( ( x e. A /\ w e. A ) -> ( x C w ) = ( x ( abs o. - ) w ) ) |
| 11 | 10 | ad2ant2l | |- ( ( ( A C_ CC /\ x e. A ) /\ ( A C_ CC /\ w e. A ) ) -> ( x C w ) = ( x ( abs o. - ) w ) ) |
| 12 | ssel2 | |- ( ( A C_ CC /\ x e. A ) -> x e. CC ) |
|
| 13 | ssel2 | |- ( ( A C_ CC /\ w e. A ) -> w e. CC ) |
|
| 14 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 15 | 14 | cnmetdval | |- ( ( x e. CC /\ w e. CC ) -> ( x ( abs o. - ) w ) = ( abs ` ( x - w ) ) ) |
| 16 | 12 13 15 | syl2an | |- ( ( ( A C_ CC /\ x e. A ) /\ ( A C_ CC /\ w e. A ) ) -> ( x ( abs o. - ) w ) = ( abs ` ( x - w ) ) ) |
| 17 | 11 16 | eqtrd | |- ( ( ( A C_ CC /\ x e. A ) /\ ( A C_ CC /\ w e. A ) ) -> ( x C w ) = ( abs ` ( x - w ) ) ) |
| 18 | 5 6 5 7 17 | syl22anc | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( x C w ) = ( abs ` ( x - w ) ) ) |
| 19 | 18 | breq1d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( x C w ) < z <-> ( abs ` ( x - w ) ) < z ) ) |
| 20 | ffvelcdm | |- ( ( f : A --> B /\ x e. A ) -> ( f ` x ) e. B ) |
|
| 21 | 20 | ad2ant2lr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( f ` x ) e. B ) |
| 22 | ffvelcdm | |- ( ( f : A --> B /\ w e. A ) -> ( f ` w ) e. B ) |
|
| 23 | 22 | ad2ant2l | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( f ` w ) e. B ) |
| 24 | 2 | oveqi | |- ( ( f ` x ) D ( f ` w ) ) = ( ( f ` x ) ( ( abs o. - ) |` ( B X. B ) ) ( f ` w ) ) |
| 25 | ovres | |- ( ( ( f ` x ) e. B /\ ( f ` w ) e. B ) -> ( ( f ` x ) ( ( abs o. - ) |` ( B X. B ) ) ( f ` w ) ) = ( ( f ` x ) ( abs o. - ) ( f ` w ) ) ) |
|
| 26 | 24 25 | eqtrid | |- ( ( ( f ` x ) e. B /\ ( f ` w ) e. B ) -> ( ( f ` x ) D ( f ` w ) ) = ( ( f ` x ) ( abs o. - ) ( f ` w ) ) ) |
| 27 | 21 23 26 | syl2anc | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( f ` x ) D ( f ` w ) ) = ( ( f ` x ) ( abs o. - ) ( f ` w ) ) ) |
| 28 | simpllr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> B C_ CC ) |
|
| 29 | 28 21 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( f ` x ) e. CC ) |
| 30 | 28 23 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( f ` w ) e. CC ) |
| 31 | 14 | cnmetdval | |- ( ( ( f ` x ) e. CC /\ ( f ` w ) e. CC ) -> ( ( f ` x ) ( abs o. - ) ( f ` w ) ) = ( abs ` ( ( f ` x ) - ( f ` w ) ) ) ) |
| 32 | 29 30 31 | syl2anc | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( f ` x ) ( abs o. - ) ( f ` w ) ) = ( abs ` ( ( f ` x ) - ( f ` w ) ) ) ) |
| 33 | 27 32 | eqtrd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( f ` x ) D ( f ` w ) ) = ( abs ` ( ( f ` x ) - ( f ` w ) ) ) ) |
| 34 | 33 | breq1d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( ( f ` x ) D ( f ` w ) ) < y <-> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) |
| 35 | 19 34 | imbi12d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 36 | 35 | anassrs | |- ( ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ x e. A ) /\ w e. A ) -> ( ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 37 | 36 | ralbidva | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ x e. A ) -> ( A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 38 | 37 | rexbidv | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ x e. A ) -> ( E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 39 | 38 | ralbidv | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) /\ x e. A ) -> ( A. y e. RR+ E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 40 | 39 | ralbidva | |- ( ( ( A C_ CC /\ B C_ CC ) /\ f : A --> B ) -> ( A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) <-> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) |
| 41 | 40 | pm5.32da | |- ( ( A C_ CC /\ B C_ CC ) -> ( ( f : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) <-> ( f : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) ) |
| 42 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 43 | xmetres2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A C_ CC ) -> ( ( abs o. - ) |` ( A X. A ) ) e. ( *Met ` A ) ) |
|
| 44 | 42 43 | mpan | |- ( A C_ CC -> ( ( abs o. - ) |` ( A X. A ) ) e. ( *Met ` A ) ) |
| 45 | 1 44 | eqeltrid | |- ( A C_ CC -> C e. ( *Met ` A ) ) |
| 46 | xmetres2 | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ B C_ CC ) -> ( ( abs o. - ) |` ( B X. B ) ) e. ( *Met ` B ) ) |
|
| 47 | 42 46 | mpan | |- ( B C_ CC -> ( ( abs o. - ) |` ( B X. B ) ) e. ( *Met ` B ) ) |
| 48 | 2 47 | eqeltrid | |- ( B C_ CC -> D e. ( *Met ` B ) ) |
| 49 | 3 4 | metcn | |- ( ( C e. ( *Met ` A ) /\ D e. ( *Met ` B ) ) -> ( f e. ( J Cn K ) <-> ( f : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) ) |
| 50 | 45 48 49 | syl2an | |- ( ( A C_ CC /\ B C_ CC ) -> ( f e. ( J Cn K ) <-> ( f : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( x C w ) < z -> ( ( f ` x ) D ( f ` w ) ) < y ) ) ) ) |
| 51 | elcncf | |- ( ( A C_ CC /\ B C_ CC ) -> ( f e. ( A -cn-> B ) <-> ( f : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( f ` x ) - ( f ` w ) ) ) < y ) ) ) ) |
|
| 52 | 41 50 51 | 3bitr4rd | |- ( ( A C_ CC /\ B C_ CC ) -> ( f e. ( A -cn-> B ) <-> f e. ( J Cn K ) ) ) |
| 53 | 52 | eqrdv | |- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( J Cn K ) ) |