This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The one scalar as a polynomial. (Contributed by SN, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplascl1.w | |- W = ( I mPoly R ) |
|
| mplascl1.a | |- A = ( algSc ` W ) |
||
| mplascl1.o | |- O = ( 1r ` R ) |
||
| mplascl1.1 | |- .1. = ( 1r ` W ) |
||
| mplascl1.i | |- ( ph -> I e. V ) |
||
| mplascl1.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mplascl1 | |- ( ph -> ( A ` O ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplascl1.w | |- W = ( I mPoly R ) |
|
| 2 | mplascl1.a | |- A = ( algSc ` W ) |
|
| 3 | mplascl1.o | |- O = ( 1r ` R ) |
|
| 4 | mplascl1.1 | |- .1. = ( 1r ` W ) |
|
| 5 | mplascl1.i | |- ( ph -> I e. V ) |
|
| 6 | mplascl1.r | |- ( ph -> R e. Ring ) |
|
| 7 | 1 5 6 | mplsca | |- ( ph -> R = ( Scalar ` W ) ) |
| 8 | 7 | fveq2d | |- ( ph -> ( 1r ` R ) = ( 1r ` ( Scalar ` W ) ) ) |
| 9 | 3 8 | eqtrid | |- ( ph -> O = ( 1r ` ( Scalar ` W ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( A ` O ) = ( A ` ( 1r ` ( Scalar ` W ) ) ) ) |
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | 1 5 6 | mpllmodd | |- ( ph -> W e. LMod ) |
| 13 | 1 5 6 | mplringd | |- ( ph -> W e. Ring ) |
| 14 | 2 11 12 13 | ascl1 | |- ( ph -> ( A ` ( 1r ` ( Scalar ` W ) ) ) = ( 1r ` W ) ) |
| 15 | 10 14 | eqtrd | |- ( ph -> ( A ` O ) = ( 1r ` W ) ) |
| 16 | 15 4 | eqtr4di | |- ( ph -> ( A ` O ) = .1. ) |