This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsaddval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsaddval.p | |- P = ( I mPoly U ) |
||
| evlsaddval.u | |- U = ( S |`s R ) |
||
| evlsaddval.k | |- K = ( Base ` S ) |
||
| evlsaddval.b | |- B = ( Base ` P ) |
||
| evlsaddval.i | |- ( ph -> I e. Z ) |
||
| evlsaddval.s | |- ( ph -> S e. CRing ) |
||
| evlsaddval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsaddval.a | |- ( ph -> A e. ( K ^m I ) ) |
||
| evlsaddval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
||
| evlsaddval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
||
| evlsmulval.g | |- .xb = ( .r ` P ) |
||
| evlsmulval.f | |- .x. = ( .r ` S ) |
||
| Assertion | evlsmulval | |- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsaddval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsaddval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsaddval.u | |- U = ( S |`s R ) |
|
| 4 | evlsaddval.k | |- K = ( Base ` S ) |
|
| 5 | evlsaddval.b | |- B = ( Base ` P ) |
|
| 6 | evlsaddval.i | |- ( ph -> I e. Z ) |
|
| 7 | evlsaddval.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlsaddval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | evlsaddval.a | |- ( ph -> A e. ( K ^m I ) ) |
|
| 10 | evlsaddval.m | |- ( ph -> ( M e. B /\ ( ( Q ` M ) ` A ) = V ) ) |
|
| 11 | evlsaddval.n | |- ( ph -> ( N e. B /\ ( ( Q ` N ) ` A ) = W ) ) |
|
| 12 | evlsmulval.g | |- .xb = ( .r ` P ) |
|
| 13 | evlsmulval.f | |- .x. = ( .r ` S ) |
|
| 14 | eqid | |- ( S ^s ( K ^m I ) ) = ( S ^s ( K ^m I ) ) |
|
| 15 | 1 2 3 14 4 | evlsrhm | |- ( ( I e. Z /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 16 | 6 7 8 15 | syl3anc | |- ( ph -> Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) ) |
| 17 | rhmrcl1 | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> P e. Ring ) |
|
| 18 | 16 17 | syl | |- ( ph -> P e. Ring ) |
| 19 | 10 | simpld | |- ( ph -> M e. B ) |
| 20 | 11 | simpld | |- ( ph -> N e. B ) |
| 21 | 5 12 | ringcl | |- ( ( P e. Ring /\ M e. B /\ N e. B ) -> ( M .xb N ) e. B ) |
| 22 | 18 19 20 21 | syl3anc | |- ( ph -> ( M .xb N ) e. B ) |
| 23 | eqid | |- ( .r ` ( S ^s ( K ^m I ) ) ) = ( .r ` ( S ^s ( K ^m I ) ) ) |
|
| 24 | 5 12 23 | rhmmul | |- ( ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) /\ M e. B /\ N e. B ) -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 25 | 16 19 20 24 | syl3anc | |- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) ) |
| 26 | eqid | |- ( Base ` ( S ^s ( K ^m I ) ) ) = ( Base ` ( S ^s ( K ^m I ) ) ) |
|
| 27 | ovexd | |- ( ph -> ( K ^m I ) e. _V ) |
|
| 28 | 5 26 | rhmf | |- ( Q e. ( P RingHom ( S ^s ( K ^m I ) ) ) -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 29 | 16 28 | syl | |- ( ph -> Q : B --> ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 30 | 29 19 | ffvelcdmd | |- ( ph -> ( Q ` M ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 31 | 29 20 | ffvelcdmd | |- ( ph -> ( Q ` N ) e. ( Base ` ( S ^s ( K ^m I ) ) ) ) |
| 32 | 14 26 7 27 30 31 13 23 | pwsmulrval | |- ( ph -> ( ( Q ` M ) ( .r ` ( S ^s ( K ^m I ) ) ) ( Q ` N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
| 33 | 25 32 | eqtrd | |- ( ph -> ( Q ` ( M .xb N ) ) = ( ( Q ` M ) oF .x. ( Q ` N ) ) ) |
| 34 | 33 | fveq1d | |- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) ) |
| 35 | 14 4 26 7 27 30 | pwselbas | |- ( ph -> ( Q ` M ) : ( K ^m I ) --> K ) |
| 36 | 35 | ffnd | |- ( ph -> ( Q ` M ) Fn ( K ^m I ) ) |
| 37 | 14 4 26 7 27 31 | pwselbas | |- ( ph -> ( Q ` N ) : ( K ^m I ) --> K ) |
| 38 | 37 | ffnd | |- ( ph -> ( Q ` N ) Fn ( K ^m I ) ) |
| 39 | fnfvof | |- ( ( ( ( Q ` M ) Fn ( K ^m I ) /\ ( Q ` N ) Fn ( K ^m I ) ) /\ ( ( K ^m I ) e. _V /\ A e. ( K ^m I ) ) ) -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
|
| 40 | 36 38 27 9 39 | syl22anc | |- ( ph -> ( ( ( Q ` M ) oF .x. ( Q ` N ) ) ` A ) = ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) ) |
| 41 | 10 | simprd | |- ( ph -> ( ( Q ` M ) ` A ) = V ) |
| 42 | 11 | simprd | |- ( ph -> ( ( Q ` N ) ` A ) = W ) |
| 43 | 41 42 | oveq12d | |- ( ph -> ( ( ( Q ` M ) ` A ) .x. ( ( Q ` N ) ` A ) ) = ( V .x. W ) ) |
| 44 | 34 40 43 | 3eqtrd | |- ( ph -> ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) |
| 45 | 22 44 | jca | |- ( ph -> ( ( M .xb N ) e. B /\ ( ( Q ` ( M .xb N ) ) ` A ) = ( V .x. W ) ) ) |