This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for a scalar. Compare evl1scad . Note that scalar multiplication by X is the same as vector multiplication by ( AX ) by asclmul1 . (Contributed by SN, 27-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsscaval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsscaval.p | |- P = ( I mPoly U ) |
||
| evlsscaval.u | |- U = ( S |`s R ) |
||
| evlsscaval.k | |- K = ( Base ` S ) |
||
| evlsscaval.b | |- B = ( Base ` P ) |
||
| evlsscaval.a | |- A = ( algSc ` P ) |
||
| evlsscaval.i | |- ( ph -> I e. V ) |
||
| evlsscaval.s | |- ( ph -> S e. CRing ) |
||
| evlsscaval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsscaval.x | |- ( ph -> X e. R ) |
||
| evlsscaval.l | |- ( ph -> L e. ( K ^m I ) ) |
||
| Assertion | evlsscaval | |- ( ph -> ( ( A ` X ) e. B /\ ( ( Q ` ( A ` X ) ) ` L ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsscaval.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsscaval.p | |- P = ( I mPoly U ) |
|
| 3 | evlsscaval.u | |- U = ( S |`s R ) |
|
| 4 | evlsscaval.k | |- K = ( Base ` S ) |
|
| 5 | evlsscaval.b | |- B = ( Base ` P ) |
|
| 6 | evlsscaval.a | |- A = ( algSc ` P ) |
|
| 7 | evlsscaval.i | |- ( ph -> I e. V ) |
|
| 8 | evlsscaval.s | |- ( ph -> S e. CRing ) |
|
| 9 | evlsscaval.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evlsscaval.x | |- ( ph -> X e. R ) |
|
| 11 | evlsscaval.l | |- ( ph -> L e. ( K ^m I ) ) |
|
| 12 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 13 | 3 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 14 | 9 13 | syl | |- ( ph -> U e. Ring ) |
| 15 | 2 5 12 6 7 14 | mplasclf | |- ( ph -> A : ( Base ` U ) --> B ) |
| 16 | 3 | subrgbas | |- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
| 17 | 9 16 | syl | |- ( ph -> R = ( Base ` U ) ) |
| 18 | 10 17 | eleqtrd | |- ( ph -> X e. ( Base ` U ) ) |
| 19 | 15 18 | ffvelcdmd | |- ( ph -> ( A ` X ) e. B ) |
| 20 | 1 2 3 4 6 7 8 9 10 | evlssca | |- ( ph -> ( Q ` ( A ` X ) ) = ( ( K ^m I ) X. { X } ) ) |
| 21 | 20 | fveq1d | |- ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = ( ( ( K ^m I ) X. { X } ) ` L ) ) |
| 22 | fvconst2g | |- ( ( X e. R /\ L e. ( K ^m I ) ) -> ( ( ( K ^m I ) X. { X } ) ` L ) = X ) |
|
| 23 | 10 11 22 | syl2anc | |- ( ph -> ( ( ( K ^m I ) X. { X } ) ` L ) = X ) |
| 24 | 21 23 | eqtrd | |- ( ph -> ( ( Q ` ( A ` X ) ) ` L ) = X ) |
| 25 | 19 24 | jca | |- ( ph -> ( ( A ` X ) e. B /\ ( ( Q ` ( A ` X ) ) ` L ) = X ) ) |