This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlsevl.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| evlsevl.o | |- O = ( I eval S ) |
||
| evlsevl.w | |- W = ( I mPoly U ) |
||
| evlsevl.u | |- U = ( S |`s R ) |
||
| evlsevl.b | |- B = ( Base ` W ) |
||
| evlsevl.i | |- ( ph -> I e. V ) |
||
| evlsevl.s | |- ( ph -> S e. CRing ) |
||
| evlsevl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evlsevl.f | |- ( ph -> F e. B ) |
||
| Assertion | evlsevl | |- ( ph -> ( Q ` F ) = ( O ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlsevl.q | |- Q = ( ( I evalSub S ) ` R ) |
|
| 2 | evlsevl.o | |- O = ( I eval S ) |
|
| 3 | evlsevl.w | |- W = ( I mPoly U ) |
|
| 4 | evlsevl.u | |- U = ( S |`s R ) |
|
| 5 | evlsevl.b | |- B = ( Base ` W ) |
|
| 6 | evlsevl.i | |- ( ph -> I e. V ) |
|
| 7 | evlsevl.s | |- ( ph -> S e. CRing ) |
|
| 8 | evlsevl.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 9 | evlsevl.f | |- ( ph -> F e. B ) |
|
| 10 | eqid | |- ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
|
| 11 | sneq | |- ( x = ( F ` b ) -> { x } = { ( F ` b ) } ) |
|
| 12 | 11 | xpeq2d | |- ( x = ( F ` b ) -> ( ( ( Base ` S ) ^m I ) X. { x } ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 13 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 14 | eqid | |- { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 15 | 3 13 5 14 9 | mplelf | |- ( ph -> F : { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } --> ( Base ` U ) ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. ( Base ` U ) ) |
| 17 | 4 | subrgbas | |- ( R e. ( SubRing ` S ) -> R = ( Base ` U ) ) |
| 18 | 8 17 | syl | |- ( ph -> R = ( Base ` U ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R = ( Base ` U ) ) |
| 20 | 16 19 | eleqtrrd | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. R ) |
| 21 | ovexd | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( Base ` S ) ^m I ) e. _V ) |
|
| 22 | snex | |- { ( F ` b ) } e. _V |
|
| 23 | 22 | a1i | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> { ( F ` b ) } e. _V ) |
| 24 | 21 23 | xpexd | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) e. _V ) |
| 25 | 10 12 20 24 | fvmptd3 | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 26 | eqid | |- ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) = ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) |
|
| 27 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 28 | 27 | subrgss | |- ( R e. ( SubRing ` S ) -> R C_ ( Base ` S ) ) |
| 29 | 8 28 | syl | |- ( ph -> R C_ ( Base ` S ) ) |
| 30 | 29 | adantr | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> R C_ ( Base ` S ) ) |
| 31 | 30 20 | sseldd | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( F ` b ) e. ( Base ` S ) ) |
| 32 | 26 12 31 24 | fvmptd3 | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( ( Base ` S ) ^m I ) X. { ( F ` b ) } ) ) |
| 33 | 25 32 | eqtr4d | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) = ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ) |
| 34 | 33 | oveq1d | |- ( ( ph /\ b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) -> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) = ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) |
| 35 | 34 | mpteq2dva | |- ( ph -> ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) = ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) |
| 36 | 35 | oveq2d | |- ( ph -> ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 37 | eqid | |- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
|
| 38 | eqid | |- ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
|
| 39 | eqid | |- ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) = ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
|
| 40 | eqid | |- ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
|
| 41 | eqid | |- ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) = ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) |
|
| 42 | 1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9 | evlsvval | |- ( ph -> ( Q ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. R |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 43 | 2 27 | evlval | |- O = ( ( I evalSub S ) ` ( Base ` S ) ) |
| 44 | 43 | fveq1i | |- ( O ` F ) = ( ( ( I evalSub S ) ` ( Base ` S ) ) ` F ) |
| 45 | eqid | |- ( ( I evalSub S ) ` ( Base ` S ) ) = ( ( I evalSub S ) ` ( Base ` S ) ) |
|
| 46 | eqid | |- ( I mPoly ( S |`s ( Base ` S ) ) ) = ( I mPoly ( S |`s ( Base ` S ) ) ) |
|
| 47 | eqid | |- ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) = ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) |
|
| 48 | eqid | |- ( S |`s ( Base ` S ) ) = ( S |`s ( Base ` S ) ) |
|
| 49 | 7 | crngringd | |- ( ph -> S e. Ring ) |
| 50 | 27 | subrgid | |- ( S e. Ring -> ( Base ` S ) e. ( SubRing ` S ) ) |
| 51 | 49 50 | syl | |- ( ph -> ( Base ` S ) e. ( SubRing ` S ) ) |
| 52 | eqid | |- ( I mPoly S ) = ( I mPoly S ) |
|
| 53 | eqid | |- ( Base ` ( I mPoly S ) ) = ( Base ` ( I mPoly S ) ) |
|
| 54 | 3 4 5 52 53 6 8 9 | mplsubrgcl | |- ( ph -> F e. ( Base ` ( I mPoly S ) ) ) |
| 55 | 27 | ressid | |- ( S e. CRing -> ( S |`s ( Base ` S ) ) = S ) |
| 56 | 7 55 | syl | |- ( ph -> ( S |`s ( Base ` S ) ) = S ) |
| 57 | 56 | oveq2d | |- ( ph -> ( I mPoly ( S |`s ( Base ` S ) ) ) = ( I mPoly S ) ) |
| 58 | 57 | fveq2d | |- ( ph -> ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) = ( Base ` ( I mPoly S ) ) ) |
| 59 | 54 58 | eleqtrrd | |- ( ph -> F e. ( Base ` ( I mPoly ( S |`s ( Base ` S ) ) ) ) ) |
| 60 | 45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59 | evlsvval | |- ( ph -> ( ( ( I evalSub S ) ` ( Base ` S ) ) ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 61 | 44 60 | eqtrid | |- ( ph -> ( O ` F ) = ( ( S ^s ( ( Base ` S ) ^m I ) ) gsum ( b e. { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |-> ( ( ( x e. ( Base ` S ) |-> ( ( ( Base ` S ) ^m I ) X. { x } ) ) ` ( F ` b ) ) ( .r ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ( ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) gsum ( b oF ( .g ` ( mulGrp ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) ( x e. I |-> ( a e. ( ( Base ` S ) ^m I ) |-> ( a ` x ) ) ) ) ) ) ) ) ) |
| 62 | 36 42 61 | 3eqtr4d | |- ( ph -> ( Q ` F ) = ( O ` F ) ) |