This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019) (Proof shortened by SN, 11-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssov1.s | |- ( ph -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
|
| suppssov1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
||
| suppssov1.a | |- ( ( ph /\ x e. D ) -> A e. V ) |
||
| suppssov1.b | |- ( ( ph /\ x e. D ) -> B e. R ) |
||
| suppssov1.y | |- ( ph -> Y e. W ) |
||
| Assertion | suppssov1 | |- ( ph -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssov1.s | |- ( ph -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
|
| 2 | suppssov1.o | |- ( ( ph /\ v e. R ) -> ( Y O v ) = Z ) |
|
| 3 | suppssov1.a | |- ( ( ph /\ x e. D ) -> A e. V ) |
|
| 4 | suppssov1.b | |- ( ( ph /\ x e. D ) -> B e. R ) |
|
| 5 | suppssov1.y | |- ( ph -> Y e. W ) |
|
| 6 | 3 | elexd | |- ( ( ph /\ x e. D ) -> A e. _V ) |
| 7 | 6 | adantlr | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> A e. _V ) |
| 8 | 7 | adantr | |- ( ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) /\ ( A O B ) e. ( _V \ { Z } ) ) -> A e. _V ) |
| 9 | oveq2 | |- ( v = B -> ( Y O v ) = ( Y O B ) ) |
|
| 10 | 9 | eqeq1d | |- ( v = B -> ( ( Y O v ) = Z <-> ( Y O B ) = Z ) ) |
| 11 | 2 | ralrimiva | |- ( ph -> A. v e. R ( Y O v ) = Z ) |
| 12 | 11 | ad2antrr | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> A. v e. R ( Y O v ) = Z ) |
| 13 | 4 | adantlr | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> B e. R ) |
| 14 | 10 12 13 | rspcdva | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> ( Y O B ) = Z ) |
| 15 | oveq1 | |- ( A = Y -> ( A O B ) = ( Y O B ) ) |
|
| 16 | 15 | eqeq1d | |- ( A = Y -> ( ( A O B ) = Z <-> ( Y O B ) = Z ) ) |
| 17 | 14 16 | syl5ibrcom | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> ( A = Y -> ( A O B ) = Z ) ) |
| 18 | 17 | necon3d | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> ( ( A O B ) =/= Z -> A =/= Y ) ) |
| 19 | eldifsni | |- ( ( A O B ) e. ( _V \ { Z } ) -> ( A O B ) =/= Z ) |
|
| 20 | 18 19 | impel | |- ( ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) /\ ( A O B ) e. ( _V \ { Z } ) ) -> A =/= Y ) |
| 21 | eldifsn | |- ( A e. ( _V \ { Y } ) <-> ( A e. _V /\ A =/= Y ) ) |
|
| 22 | 8 20 21 | sylanbrc | |- ( ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) /\ ( A O B ) e. ( _V \ { Z } ) ) -> A e. ( _V \ { Y } ) ) |
| 23 | 22 | ex | |- ( ( ( ph /\ ( D e. _V /\ Z e. _V ) ) /\ x e. D ) -> ( ( A O B ) e. ( _V \ { Z } ) -> A e. ( _V \ { Y } ) ) ) |
| 24 | 23 | ss2rabdv | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> { x e. D | ( A O B ) e. ( _V \ { Z } ) } C_ { x e. D | A e. ( _V \ { Y } ) } ) |
| 25 | eqid | |- ( x e. D |-> ( A O B ) ) = ( x e. D |-> ( A O B ) ) |
|
| 26 | simprl | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> D e. _V ) |
|
| 27 | simprr | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> Z e. _V ) |
|
| 28 | 25 26 27 | mptsuppdifd | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) = { x e. D | ( A O B ) e. ( _V \ { Z } ) } ) |
| 29 | eqid | |- ( x e. D |-> A ) = ( x e. D |-> A ) |
|
| 30 | 5 | adantr | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> Y e. W ) |
| 31 | 29 26 30 | mptsuppdifd | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> A ) supp Y ) = { x e. D | A e. ( _V \ { Y } ) } ) |
| 32 | 24 28 31 | 3sstr4d | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ ( ( x e. D |-> A ) supp Y ) ) |
| 33 | 1 | adantr | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
| 34 | 32 33 | sstrd | |- ( ( ph /\ ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ L ) |
| 35 | mptexg | |- ( D e. _V -> ( x e. D |-> ( A O B ) ) e. _V ) |
|
| 36 | ovex | |- ( A O B ) e. _V |
|
| 37 | 36 | rgenw | |- A. x e. D ( A O B ) e. _V |
| 38 | dmmptg | |- ( A. x e. D ( A O B ) e. _V -> dom ( x e. D |-> ( A O B ) ) = D ) |
|
| 39 | 37 38 | ax-mp | |- dom ( x e. D |-> ( A O B ) ) = D |
| 40 | dmexg | |- ( ( x e. D |-> ( A O B ) ) e. _V -> dom ( x e. D |-> ( A O B ) ) e. _V ) |
|
| 41 | 39 40 | eqeltrrid | |- ( ( x e. D |-> ( A O B ) ) e. _V -> D e. _V ) |
| 42 | 35 41 | impbii | |- ( D e. _V <-> ( x e. D |-> ( A O B ) ) e. _V ) |
| 43 | 42 | anbi1i | |- ( ( D e. _V /\ Z e. _V ) <-> ( ( x e. D |-> ( A O B ) ) e. _V /\ Z e. _V ) ) |
| 44 | supp0prc | |- ( -. ( ( x e. D |-> ( A O B ) ) e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) = (/) ) |
|
| 45 | 43 44 | sylnbi | |- ( -. ( D e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) = (/) ) |
| 46 | 0ss | |- (/) C_ L |
|
| 47 | 45 46 | eqsstrdi | |- ( -. ( D e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ L ) |
| 48 | 47 | adantl | |- ( ( ph /\ -. ( D e. _V /\ Z e. _V ) ) -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ L ) |
| 49 | 34 48 | pm2.61dan | |- ( ph -> ( ( x e. D |-> ( A O B ) ) supp Z ) C_ L ) |