This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 28-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppssfv.a | |- ( ph -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
|
| suppssfv.f | |- ( ph -> ( F ` Y ) = Z ) |
||
| suppssfv.v | |- ( ( ph /\ x e. D ) -> A e. V ) |
||
| suppssfv.y | |- ( ph -> Y e. U ) |
||
| Assertion | suppssfv | |- ( ph -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppssfv.a | |- ( ph -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
|
| 2 | suppssfv.f | |- ( ph -> ( F ` Y ) = Z ) |
|
| 3 | suppssfv.v | |- ( ( ph /\ x e. D ) -> A e. V ) |
|
| 4 | suppssfv.y | |- ( ph -> Y e. U ) |
|
| 5 | eldifsni | |- ( ( F ` A ) e. ( _V \ { Z } ) -> ( F ` A ) =/= Z ) |
|
| 6 | 3 | elexd | |- ( ( ph /\ x e. D ) -> A e. _V ) |
| 7 | 6 | ad4ant23 | |- ( ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) /\ ( F ` A ) =/= Z ) -> A e. _V ) |
| 8 | fveqeq2 | |- ( A = Y -> ( ( F ` A ) = Z <-> ( F ` Y ) = Z ) ) |
|
| 9 | 2 8 | syl5ibrcom | |- ( ph -> ( A = Y -> ( F ` A ) = Z ) ) |
| 10 | 9 | necon3d | |- ( ph -> ( ( F ` A ) =/= Z -> A =/= Y ) ) |
| 11 | 10 | ad2antlr | |- ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) -> ( ( F ` A ) =/= Z -> A =/= Y ) ) |
| 12 | 11 | imp | |- ( ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) /\ ( F ` A ) =/= Z ) -> A =/= Y ) |
| 13 | eldifsn | |- ( A e. ( _V \ { Y } ) <-> ( A e. _V /\ A =/= Y ) ) |
|
| 14 | 7 12 13 | sylanbrc | |- ( ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) /\ ( F ` A ) =/= Z ) -> A e. ( _V \ { Y } ) ) |
| 15 | 14 | ex | |- ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) -> ( ( F ` A ) =/= Z -> A e. ( _V \ { Y } ) ) ) |
| 16 | 5 15 | syl5 | |- ( ( ( ( D e. _V /\ Z e. _V ) /\ ph ) /\ x e. D ) -> ( ( F ` A ) e. ( _V \ { Z } ) -> A e. ( _V \ { Y } ) ) ) |
| 17 | 16 | ss2rabdv | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> { x e. D | ( F ` A ) e. ( _V \ { Z } ) } C_ { x e. D | A e. ( _V \ { Y } ) } ) |
| 18 | eqid | |- ( x e. D |-> ( F ` A ) ) = ( x e. D |-> ( F ` A ) ) |
|
| 19 | simpll | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> D e. _V ) |
|
| 20 | simplr | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> Z e. _V ) |
|
| 21 | 18 19 20 | mptsuppdifd | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) = { x e. D | ( F ` A ) e. ( _V \ { Z } ) } ) |
| 22 | eqid | |- ( x e. D |-> A ) = ( x e. D |-> A ) |
|
| 23 | 4 | adantl | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> Y e. U ) |
| 24 | 22 19 23 | mptsuppdifd | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> ( ( x e. D |-> A ) supp Y ) = { x e. D | A e. ( _V \ { Y } ) } ) |
| 25 | 17 21 24 | 3sstr4d | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ ( ( x e. D |-> A ) supp Y ) ) |
| 26 | 1 | adantl | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> ( ( x e. D |-> A ) supp Y ) C_ L ) |
| 27 | 25 26 | sstrd | |- ( ( ( D e. _V /\ Z e. _V ) /\ ph ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) |
| 28 | 27 | ex | |- ( ( D e. _V /\ Z e. _V ) -> ( ph -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) ) |
| 29 | mptexg | |- ( D e. _V -> ( x e. D |-> ( F ` A ) ) e. _V ) |
|
| 30 | fvex | |- ( F ` A ) e. _V |
|
| 31 | 30 | rgenw | |- A. x e. D ( F ` A ) e. _V |
| 32 | dmmptg | |- ( A. x e. D ( F ` A ) e. _V -> dom ( x e. D |-> ( F ` A ) ) = D ) |
|
| 33 | 31 32 | ax-mp | |- dom ( x e. D |-> ( F ` A ) ) = D |
| 34 | dmexg | |- ( ( x e. D |-> ( F ` A ) ) e. _V -> dom ( x e. D |-> ( F ` A ) ) e. _V ) |
|
| 35 | 33 34 | eqeltrrid | |- ( ( x e. D |-> ( F ` A ) ) e. _V -> D e. _V ) |
| 36 | 29 35 | impbii | |- ( D e. _V <-> ( x e. D |-> ( F ` A ) ) e. _V ) |
| 37 | 36 | anbi1i | |- ( ( D e. _V /\ Z e. _V ) <-> ( ( x e. D |-> ( F ` A ) ) e. _V /\ Z e. _V ) ) |
| 38 | supp0prc | |- ( -. ( ( x e. D |-> ( F ` A ) ) e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) = (/) ) |
|
| 39 | 37 38 | sylnbi | |- ( -. ( D e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) = (/) ) |
| 40 | 0ss | |- (/) C_ L |
|
| 41 | 39 40 | eqsstrdi | |- ( -. ( D e. _V /\ Z e. _V ) -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) |
| 42 | 41 | a1d | |- ( -. ( D e. _V /\ Z e. _V ) -> ( ph -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) ) |
| 43 | 28 42 | pm2.61i | |- ( ph -> ( ( x e. D |-> ( F ` A ) ) supp Z ) C_ L ) |