This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function value of the evaluation function of a polynomial is an element of the underlying ring. (Contributed by AV, 17-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fveval1fvcl.q | |- O = ( eval1 ` R ) |
|
| fveval1fvcl.p | |- P = ( Poly1 ` R ) |
||
| fveval1fvcl.b | |- B = ( Base ` R ) |
||
| fveval1fvcl.u | |- U = ( Base ` P ) |
||
| fveval1fvcl.r | |- ( ph -> R e. CRing ) |
||
| fveval1fvcl.y | |- ( ph -> Y e. B ) |
||
| fveval1fvcl.m | |- ( ph -> M e. U ) |
||
| Assertion | fveval1fvcl | |- ( ph -> ( ( O ` M ) ` Y ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveval1fvcl.q | |- O = ( eval1 ` R ) |
|
| 2 | fveval1fvcl.p | |- P = ( Poly1 ` R ) |
|
| 3 | fveval1fvcl.b | |- B = ( Base ` R ) |
|
| 4 | fveval1fvcl.u | |- U = ( Base ` P ) |
|
| 5 | fveval1fvcl.r | |- ( ph -> R e. CRing ) |
|
| 6 | fveval1fvcl.y | |- ( ph -> Y e. B ) |
|
| 7 | fveval1fvcl.m | |- ( ph -> M e. U ) |
|
| 8 | eqid | |- ( R ^s B ) = ( R ^s B ) |
|
| 9 | eqid | |- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
|
| 10 | 3 | fvexi | |- B e. _V |
| 11 | 10 | a1i | |- ( ph -> B e. _V ) |
| 12 | 1 2 8 3 | evl1rhm | |- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
| 13 | 4 9 | rhmf | |- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 14 | 5 12 13 | 3syl | |- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 15 | 14 7 | ffvelcdmd | |- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
| 16 | 8 3 9 5 11 15 | pwselbas | |- ( ph -> ( O ` M ) : B --> B ) |
| 17 | 16 6 | ffvelcdmd | |- ( ph -> ( ( O ` M ) ` Y ) e. B ) |