This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Univariate polynomial evaluation of a sum of polynomials. (Contributed by Thierry Arnoux, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| ressply1evl2.k | |- K = ( Base ` S ) |
||
| ressply1evl2.w | |- W = ( Poly1 ` U ) |
||
| ressply1evl2.u | |- U = ( S |`s R ) |
||
| ressply1evl2.b | |- B = ( Base ` W ) |
||
| evls1addd.1 | |- .+^ = ( +g ` W ) |
||
| evls1addd.2 | |- .+ = ( +g ` S ) |
||
| evls1addd.s | |- ( ph -> S e. CRing ) |
||
| evls1addd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
||
| evls1addd.m | |- ( ph -> M e. B ) |
||
| evls1addd.n | |- ( ph -> N e. B ) |
||
| evls1addd.y | |- ( ph -> C e. K ) |
||
| Assertion | evls1addd | |- ( ph -> ( ( Q ` ( M .+^ N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply1evl2.q | |- Q = ( S evalSub1 R ) |
|
| 2 | ressply1evl2.k | |- K = ( Base ` S ) |
|
| 3 | ressply1evl2.w | |- W = ( Poly1 ` U ) |
|
| 4 | ressply1evl2.u | |- U = ( S |`s R ) |
|
| 5 | ressply1evl2.b | |- B = ( Base ` W ) |
|
| 6 | evls1addd.1 | |- .+^ = ( +g ` W ) |
|
| 7 | evls1addd.2 | |- .+ = ( +g ` S ) |
|
| 8 | evls1addd.s | |- ( ph -> S e. CRing ) |
|
| 9 | evls1addd.r | |- ( ph -> R e. ( SubRing ` S ) ) |
|
| 10 | evls1addd.m | |- ( ph -> M e. B ) |
|
| 11 | evls1addd.n | |- ( ph -> N e. B ) |
|
| 12 | evls1addd.y | |- ( ph -> C e. K ) |
|
| 13 | id | |- ( ph -> ph ) |
|
| 14 | eqid | |- ( Poly1 ` S ) = ( Poly1 ` S ) |
|
| 15 | eqid | |- ( ( Poly1 ` S ) |`s B ) = ( ( Poly1 ` S ) |`s B ) |
|
| 16 | 14 4 3 5 9 15 | ressply1add | |- ( ( ph /\ ( M e. B /\ N e. B ) ) -> ( M ( +g ` W ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 17 | 13 10 11 16 | syl12anc | |- ( ph -> ( M ( +g ` W ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) ) |
| 18 | 6 | oveqi | |- ( M .+^ N ) = ( M ( +g ` W ) N ) |
| 19 | 5 | fvexi | |- B e. _V |
| 20 | eqid | |- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( Poly1 ` S ) ) |
|
| 21 | 15 20 | ressplusg | |- ( B e. _V -> ( +g ` ( Poly1 ` S ) ) = ( +g ` ( ( Poly1 ` S ) |`s B ) ) ) |
| 22 | 19 21 | ax-mp | |- ( +g ` ( Poly1 ` S ) ) = ( +g ` ( ( Poly1 ` S ) |`s B ) ) |
| 23 | 22 | oveqi | |- ( M ( +g ` ( Poly1 ` S ) ) N ) = ( M ( +g ` ( ( Poly1 ` S ) |`s B ) ) N ) |
| 24 | 17 18 23 | 3eqtr4g | |- ( ph -> ( M .+^ N ) = ( M ( +g ` ( Poly1 ` S ) ) N ) ) |
| 25 | 24 | fveq2d | |- ( ph -> ( ( eval1 ` S ) ` ( M .+^ N ) ) = ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ) |
| 26 | 25 | fveq1d | |- ( ph -> ( ( ( eval1 ` S ) ` ( M .+^ N ) ) ` C ) = ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) ) |
| 27 | eqid | |- ( eval1 ` S ) = ( eval1 ` S ) |
|
| 28 | 1 2 3 4 5 27 8 9 | ressply1evl | |- ( ph -> Q = ( ( eval1 ` S ) |` B ) ) |
| 29 | 28 | fveq1d | |- ( ph -> ( Q ` ( M .+^ N ) ) = ( ( ( eval1 ` S ) |` B ) ` ( M .+^ N ) ) ) |
| 30 | 4 | subrgring | |- ( R e. ( SubRing ` S ) -> U e. Ring ) |
| 31 | 3 | ply1ring | |- ( U e. Ring -> W e. Ring ) |
| 32 | 9 30 31 | 3syl | |- ( ph -> W e. Ring ) |
| 33 | 32 | ringgrpd | |- ( ph -> W e. Grp ) |
| 34 | 5 6 33 10 11 | grpcld | |- ( ph -> ( M .+^ N ) e. B ) |
| 35 | 34 | fvresd | |- ( ph -> ( ( ( eval1 ` S ) |` B ) ` ( M .+^ N ) ) = ( ( eval1 ` S ) ` ( M .+^ N ) ) ) |
| 36 | 29 35 | eqtr2d | |- ( ph -> ( ( eval1 ` S ) ` ( M .+^ N ) ) = ( Q ` ( M .+^ N ) ) ) |
| 37 | 36 | fveq1d | |- ( ph -> ( ( ( eval1 ` S ) ` ( M .+^ N ) ) ` C ) = ( ( Q ` ( M .+^ N ) ) ` C ) ) |
| 38 | eqid | |- ( Base ` ( Poly1 ` S ) ) = ( Base ` ( Poly1 ` S ) ) |
|
| 39 | eqid | |- ( PwSer1 ` U ) = ( PwSer1 ` U ) |
|
| 40 | eqid | |- ( Base ` ( PwSer1 ` U ) ) = ( Base ` ( PwSer1 ` U ) ) |
|
| 41 | 14 4 3 5 9 39 40 38 | ressply1bas2 | |- ( ph -> B = ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) ) |
| 42 | inss2 | |- ( ( Base ` ( PwSer1 ` U ) ) i^i ( Base ` ( Poly1 ` S ) ) ) C_ ( Base ` ( Poly1 ` S ) ) |
|
| 43 | 41 42 | eqsstrdi | |- ( ph -> B C_ ( Base ` ( Poly1 ` S ) ) ) |
| 44 | 43 10 | sseldd | |- ( ph -> M e. ( Base ` ( Poly1 ` S ) ) ) |
| 45 | 28 | fveq1d | |- ( ph -> ( Q ` M ) = ( ( ( eval1 ` S ) |` B ) ` M ) ) |
| 46 | 10 | fvresd | |- ( ph -> ( ( ( eval1 ` S ) |` B ) ` M ) = ( ( eval1 ` S ) ` M ) ) |
| 47 | 45 46 | eqtr2d | |- ( ph -> ( ( eval1 ` S ) ` M ) = ( Q ` M ) ) |
| 48 | 47 | fveq1d | |- ( ph -> ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) |
| 49 | 44 48 | jca | |- ( ph -> ( M e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` M ) ` C ) = ( ( Q ` M ) ` C ) ) ) |
| 50 | 43 11 | sseldd | |- ( ph -> N e. ( Base ` ( Poly1 ` S ) ) ) |
| 51 | 28 | fveq1d | |- ( ph -> ( Q ` N ) = ( ( ( eval1 ` S ) |` B ) ` N ) ) |
| 52 | 11 | fvresd | |- ( ph -> ( ( ( eval1 ` S ) |` B ) ` N ) = ( ( eval1 ` S ) ` N ) ) |
| 53 | 51 52 | eqtr2d | |- ( ph -> ( ( eval1 ` S ) ` N ) = ( Q ` N ) ) |
| 54 | 53 | fveq1d | |- ( ph -> ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) |
| 55 | 50 54 | jca | |- ( ph -> ( N e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` N ) ` C ) = ( ( Q ` N ) ` C ) ) ) |
| 56 | 27 14 2 38 8 12 49 55 20 7 | evl1addd | |- ( ph -> ( ( M ( +g ` ( Poly1 ` S ) ) N ) e. ( Base ` ( Poly1 ` S ) ) /\ ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) ) |
| 57 | 56 | simprd | |- ( ph -> ( ( ( eval1 ` S ) ` ( M ( +g ` ( Poly1 ` S ) ) N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) |
| 58 | 26 37 57 | 3eqtr3d | |- ( ph -> ( ( Q ` ( M .+^ N ) ) ` C ) = ( ( ( Q ` M ) ` C ) .+ ( ( Q ` N ) ` C ) ) ) |