This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | |- O = ( eval1 ` R ) |
|
| evl1addd.p | |- P = ( Poly1 ` R ) |
||
| evl1addd.b | |- B = ( Base ` R ) |
||
| evl1addd.u | |- U = ( Base ` P ) |
||
| evl1addd.1 | |- ( ph -> R e. CRing ) |
||
| evl1addd.2 | |- ( ph -> Y e. B ) |
||
| evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
||
| evl1vsd.4 | |- ( ph -> N e. B ) |
||
| evl1vsd.s | |- .xb = ( .s ` P ) |
||
| evl1vsd.t | |- .x. = ( .r ` R ) |
||
| Assertion | evl1vsd | |- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1addd.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1addd.b | |- B = ( Base ` R ) |
|
| 4 | evl1addd.u | |- U = ( Base ` P ) |
|
| 5 | evl1addd.1 | |- ( ph -> R e. CRing ) |
|
| 6 | evl1addd.2 | |- ( ph -> Y e. B ) |
|
| 7 | evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
|
| 8 | evl1vsd.4 | |- ( ph -> N e. B ) |
|
| 9 | evl1vsd.s | |- .xb = ( .s ` P ) |
|
| 10 | evl1vsd.t | |- .x. = ( .r ` R ) |
|
| 11 | eqid | |- ( algSc ` P ) = ( algSc ` P ) |
|
| 12 | 1 2 3 11 4 5 8 6 | evl1scad | |- ( ph -> ( ( ( algSc ` P ) ` N ) e. U /\ ( ( O ` ( ( algSc ` P ) ` N ) ) ` Y ) = N ) ) |
| 13 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 14 | 1 2 3 4 5 6 12 7 13 10 | evl1muld | |- ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) ) |
| 15 | 2 | ply1assa | |- ( R e. CRing -> P e. AssAlg ) |
| 16 | 5 15 | syl | |- ( ph -> P e. AssAlg ) |
| 17 | 2 | ply1sca | |- ( R e. CRing -> R = ( Scalar ` P ) ) |
| 18 | 5 17 | syl | |- ( ph -> R = ( Scalar ` P ) ) |
| 19 | 18 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 20 | 3 19 | eqtrid | |- ( ph -> B = ( Base ` ( Scalar ` P ) ) ) |
| 21 | 8 20 | eleqtrd | |- ( ph -> N e. ( Base ` ( Scalar ` P ) ) ) |
| 22 | 7 | simpld | |- ( ph -> M e. U ) |
| 23 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 24 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 25 | 11 23 24 4 13 9 | asclmul1 | |- ( ( P e. AssAlg /\ N e. ( Base ` ( Scalar ` P ) ) /\ M e. U ) -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) |
| 26 | 16 21 22 25 | syl3anc | |- ( ph -> ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) = ( N .xb M ) ) |
| 27 | 26 | eleq1d | |- ( ph -> ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U <-> ( N .xb M ) e. U ) ) |
| 28 | 26 | fveq2d | |- ( ph -> ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) = ( O ` ( N .xb M ) ) ) |
| 29 | 28 | fveq1d | |- ( ph -> ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( ( O ` ( N .xb M ) ) ` Y ) ) |
| 30 | 29 | eqeq1d | |- ( ph -> ( ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) <-> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |
| 31 | 27 30 | anbi12d | |- ( ph -> ( ( ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) e. U /\ ( ( O ` ( ( ( algSc ` P ) ` N ) ( .r ` P ) M ) ) ` Y ) = ( N .x. V ) ) <-> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) ) |
| 32 | 14 31 | mpbid | |- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .x. V ) ) ) |