This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for scalar multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | ||
| evl1vsd.4 | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) | ||
| evl1vsd.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | ||
| evl1vsd.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | evl1vsd | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | |
| 8 | evl1vsd.4 | ⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) | |
| 9 | evl1vsd.s | ⊢ ∙ = ( ·𝑠 ‘ 𝑃 ) | |
| 10 | evl1vsd.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) | |
| 12 | 1 2 3 11 4 5 8 6 | evl1scad | ⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ) ‘ 𝑌 ) = 𝑁 ) ) |
| 13 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 14 | 1 2 3 4 5 6 12 7 13 10 | evl1muld | ⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |
| 15 | 2 | ply1assa | ⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 17 | 2 | ply1sca | ⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 19 | 18 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 20 | 3 19 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 21 | 8 20 | eleqtrd | ⊢ ( 𝜑 → 𝑁 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 22 | 7 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 23 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 24 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 25 | 11 23 24 4 13 9 | asclmul1 | ⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑁 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑀 ∈ 𝑈 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) = ( 𝑁 ∙ 𝑀 ) ) |
| 26 | 16 21 22 25 | syl3anc | ⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) = ( 𝑁 ∙ 𝑀 ) ) |
| 27 | 26 | eleq1d | ⊢ ( 𝜑 → ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ↔ ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ) ) |
| 28 | 26 | fveq2d | ⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) = ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ) |
| 29 | 28 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) ) |
| 30 | 29 | eqeq1d | ⊢ ( 𝜑 → ( ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ↔ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |
| 31 | 27 30 | anbi12d | ⊢ ( 𝜑 → ( ( ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑁 ) ( .r ‘ 𝑃 ) 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ↔ ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) ) |
| 32 | 14 31 | mpbid | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 · 𝑉 ) ) ) |