This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for scalars. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1sca.o | |- O = ( eval1 ` R ) |
|
| evl1sca.p | |- P = ( Poly1 ` R ) |
||
| evl1sca.b | |- B = ( Base ` R ) |
||
| evl1sca.a | |- A = ( algSc ` P ) |
||
| evl1scad.u | |- U = ( Base ` P ) |
||
| evl1scad.1 | |- ( ph -> R e. CRing ) |
||
| evl1scad.2 | |- ( ph -> X e. B ) |
||
| evl1scad.3 | |- ( ph -> Y e. B ) |
||
| Assertion | evl1scad | |- ( ph -> ( ( A ` X ) e. U /\ ( ( O ` ( A ` X ) ) ` Y ) = X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1sca.o | |- O = ( eval1 ` R ) |
|
| 2 | evl1sca.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1sca.b | |- B = ( Base ` R ) |
|
| 4 | evl1sca.a | |- A = ( algSc ` P ) |
|
| 5 | evl1scad.u | |- U = ( Base ` P ) |
|
| 6 | evl1scad.1 | |- ( ph -> R e. CRing ) |
|
| 7 | evl1scad.2 | |- ( ph -> X e. B ) |
|
| 8 | evl1scad.3 | |- ( ph -> Y e. B ) |
|
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 2 4 3 5 | ply1sclf | |- ( R e. Ring -> A : B --> U ) |
| 11 | 6 9 10 | 3syl | |- ( ph -> A : B --> U ) |
| 12 | 11 7 | ffvelcdmd | |- ( ph -> ( A ` X ) e. U ) |
| 13 | 1 2 3 4 | evl1sca | |- ( ( R e. CRing /\ X e. B ) -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |
| 14 | 6 7 13 | syl2anc | |- ( ph -> ( O ` ( A ` X ) ) = ( B X. { X } ) ) |
| 15 | 14 | fveq1d | |- ( ph -> ( ( O ` ( A ` X ) ) ` Y ) = ( ( B X. { X } ) ` Y ) ) |
| 16 | fvconst2g | |- ( ( X e. B /\ Y e. B ) -> ( ( B X. { X } ) ` Y ) = X ) |
|
| 17 | 7 8 16 | syl2anc | |- ( ph -> ( ( B X. { X } ) ` Y ) = X ) |
| 18 | 15 17 | eqtrd | |- ( ph -> ( ( O ` ( A ` X ) ) ` Y ) = X ) |
| 19 | 12 18 | jca | |- ( ph -> ( ( A ` X ) e. U /\ ( ( O ` ( A ` X ) ) ` Y ) = X ) ) |