This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | |- O = ( eval1 ` R ) |
|
| evl1addd.p | |- P = ( Poly1 ` R ) |
||
| evl1addd.b | |- B = ( Base ` R ) |
||
| evl1addd.u | |- U = ( Base ` P ) |
||
| evl1addd.1 | |- ( ph -> R e. CRing ) |
||
| evl1addd.2 | |- ( ph -> Y e. B ) |
||
| evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
||
| evl1expd.f | |- .xb = ( .g ` ( mulGrp ` P ) ) |
||
| evl1expd.e | |- .^ = ( .g ` ( mulGrp ` R ) ) |
||
| evl1expd.4 | |- ( ph -> N e. NN0 ) |
||
| Assertion | evl1expd | |- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1addd.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1addd.b | |- B = ( Base ` R ) |
|
| 4 | evl1addd.u | |- U = ( Base ` P ) |
|
| 5 | evl1addd.1 | |- ( ph -> R e. CRing ) |
|
| 6 | evl1addd.2 | |- ( ph -> Y e. B ) |
|
| 7 | evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
|
| 8 | evl1expd.f | |- .xb = ( .g ` ( mulGrp ` P ) ) |
|
| 9 | evl1expd.e | |- .^ = ( .g ` ( mulGrp ` R ) ) |
|
| 10 | evl1expd.4 | |- ( ph -> N e. NN0 ) |
|
| 11 | eqid | |- ( mulGrp ` P ) = ( mulGrp ` P ) |
|
| 12 | 11 4 | mgpbas | |- U = ( Base ` ( mulGrp ` P ) ) |
| 13 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 14 | 5 13 | syl | |- ( ph -> R e. Ring ) |
| 15 | 2 | ply1ring | |- ( R e. Ring -> P e. Ring ) |
| 16 | 11 | ringmgp | |- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 17 | 14 15 16 | 3syl | |- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 18 | 7 | simpld | |- ( ph -> M e. U ) |
| 19 | 12 8 17 10 18 | mulgnn0cld | |- ( ph -> ( N .xb M ) e. U ) |
| 20 | eqid | |- ( R ^s B ) = ( R ^s B ) |
|
| 21 | 1 2 20 3 | evl1rhm | |- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
| 22 | 5 21 | syl | |- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
| 23 | eqid | |- ( mulGrp ` ( R ^s B ) ) = ( mulGrp ` ( R ^s B ) ) |
|
| 24 | 11 23 | rhmmhm | |- ( O e. ( P RingHom ( R ^s B ) ) -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
| 25 | 22 24 | syl | |- ( ph -> O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) ) |
| 26 | eqid | |- ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( mulGrp ` ( R ^s B ) ) ) |
|
| 27 | 12 8 26 | mhmmulg | |- ( ( O e. ( ( mulGrp ` P ) MndHom ( mulGrp ` ( R ^s B ) ) ) /\ N e. NN0 /\ M e. U ) -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
| 28 | 25 10 18 27 | syl3anc | |- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) ) |
| 29 | eqid | |- ( .g ` ( ( mulGrp ` R ) ^s B ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) |
|
| 30 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) ) |
|
| 31 | 3 | fvexi | |- B e. _V |
| 32 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 33 | eqid | |- ( ( mulGrp ` R ) ^s B ) = ( ( mulGrp ` R ) ^s B ) |
|
| 34 | eqid | |- ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
|
| 35 | eqid | |- ( Base ` ( ( mulGrp ` R ) ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) |
|
| 36 | eqid | |- ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( mulGrp ` ( R ^s B ) ) ) |
|
| 37 | eqid | |- ( +g ` ( ( mulGrp ` R ) ^s B ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) |
|
| 38 | 20 32 33 23 34 35 36 37 | pwsmgp | |- ( ( R e. CRing /\ B e. _V ) -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 39 | 5 31 38 | sylancl | |- ( ph -> ( ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) ) |
| 40 | 39 | simpld | |- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 41 | ssv | |- ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V |
|
| 42 | 41 | a1i | |- ( ph -> ( Base ` ( mulGrp ` ( R ^s B ) ) ) C_ _V ) |
| 43 | ovexd | |- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) e. _V ) |
|
| 44 | 39 | simprd | |- ( ph -> ( +g ` ( mulGrp ` ( R ^s B ) ) ) = ( +g ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 45 | 44 | oveqdr | |- ( ( ph /\ ( x e. _V /\ y e. _V ) ) -> ( x ( +g ` ( mulGrp ` ( R ^s B ) ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s B ) ) y ) ) |
| 46 | 26 29 30 40 42 43 45 | mulgpropd | |- ( ph -> ( .g ` ( mulGrp ` ( R ^s B ) ) ) = ( .g ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 47 | 46 | oveqd | |- ( ph -> ( N ( .g ` ( mulGrp ` ( R ^s B ) ) ) ( O ` M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
| 48 | 28 47 | eqtrd | |- ( ph -> ( O ` ( N .xb M ) ) = ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ) |
| 49 | 48 | fveq1d | |- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) ) |
| 50 | 32 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 51 | 14 50 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 52 | 31 | a1i | |- ( ph -> B e. _V ) |
| 53 | eqid | |- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
|
| 54 | 4 53 | rhmf | |- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 55 | 22 54 | syl | |- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 56 | 55 18 | ffvelcdmd | |- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
| 57 | 23 53 | mgpbas | |- ( Base ` ( R ^s B ) ) = ( Base ` ( mulGrp ` ( R ^s B ) ) ) |
| 58 | 57 40 | eqtrid | |- ( ph -> ( Base ` ( R ^s B ) ) = ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 59 | 56 58 | eleqtrd | |- ( ph -> ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) ) |
| 60 | 33 35 29 9 | pwsmulg | |- ( ( ( ( mulGrp ` R ) e. Mnd /\ B e. _V ) /\ ( N e. NN0 /\ ( O ` M ) e. ( Base ` ( ( mulGrp ` R ) ^s B ) ) /\ Y e. B ) ) -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
| 61 | 51 52 10 59 6 60 | syl23anc | |- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ ( ( O ` M ) ` Y ) ) ) |
| 62 | 7 | simprd | |- ( ph -> ( ( O ` M ) ` Y ) = V ) |
| 63 | 62 | oveq2d | |- ( ph -> ( N .^ ( ( O ` M ) ` Y ) ) = ( N .^ V ) ) |
| 64 | 61 63 | eqtrd | |- ( ph -> ( ( N ( .g ` ( ( mulGrp ` R ) ^s B ) ) ( O ` M ) ) ` Y ) = ( N .^ V ) ) |
| 65 | 49 64 | eqtrd | |- ( ph -> ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) |
| 66 | 19 65 | jca | |- ( ph -> ( ( N .xb M ) e. U /\ ( ( O ` ( N .xb M ) ) ` Y ) = ( N .^ V ) ) ) |