This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for multiplication of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | |- O = ( eval1 ` R ) |
|
| evl1addd.p | |- P = ( Poly1 ` R ) |
||
| evl1addd.b | |- B = ( Base ` R ) |
||
| evl1addd.u | |- U = ( Base ` P ) |
||
| evl1addd.1 | |- ( ph -> R e. CRing ) |
||
| evl1addd.2 | |- ( ph -> Y e. B ) |
||
| evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
||
| evl1addd.4 | |- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
||
| evl1muld.t | |- .xb = ( .r ` P ) |
||
| evl1muld.s | |- .x. = ( .r ` R ) |
||
| Assertion | evl1muld | |- ( ph -> ( ( M .xb N ) e. U /\ ( ( O ` ( M .xb N ) ) ` Y ) = ( V .x. W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1addd.p | |- P = ( Poly1 ` R ) |
|
| 3 | evl1addd.b | |- B = ( Base ` R ) |
|
| 4 | evl1addd.u | |- U = ( Base ` P ) |
|
| 5 | evl1addd.1 | |- ( ph -> R e. CRing ) |
|
| 6 | evl1addd.2 | |- ( ph -> Y e. B ) |
|
| 7 | evl1addd.3 | |- ( ph -> ( M e. U /\ ( ( O ` M ) ` Y ) = V ) ) |
|
| 8 | evl1addd.4 | |- ( ph -> ( N e. U /\ ( ( O ` N ) ` Y ) = W ) ) |
|
| 9 | evl1muld.t | |- .xb = ( .r ` P ) |
|
| 10 | evl1muld.s | |- .x. = ( .r ` R ) |
|
| 11 | eqid | |- ( R ^s B ) = ( R ^s B ) |
|
| 12 | 1 2 11 3 | evl1rhm | |- ( R e. CRing -> O e. ( P RingHom ( R ^s B ) ) ) |
| 13 | 5 12 | syl | |- ( ph -> O e. ( P RingHom ( R ^s B ) ) ) |
| 14 | rhmrcl1 | |- ( O e. ( P RingHom ( R ^s B ) ) -> P e. Ring ) |
|
| 15 | 13 14 | syl | |- ( ph -> P e. Ring ) |
| 16 | 7 | simpld | |- ( ph -> M e. U ) |
| 17 | 8 | simpld | |- ( ph -> N e. U ) |
| 18 | 4 9 | ringcl | |- ( ( P e. Ring /\ M e. U /\ N e. U ) -> ( M .xb N ) e. U ) |
| 19 | 15 16 17 18 | syl3anc | |- ( ph -> ( M .xb N ) e. U ) |
| 20 | eqid | |- ( .r ` ( R ^s B ) ) = ( .r ` ( R ^s B ) ) |
|
| 21 | 4 9 20 | rhmmul | |- ( ( O e. ( P RingHom ( R ^s B ) ) /\ M e. U /\ N e. U ) -> ( O ` ( M .xb N ) ) = ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) ) |
| 22 | 13 16 17 21 | syl3anc | |- ( ph -> ( O ` ( M .xb N ) ) = ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) ) |
| 23 | eqid | |- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
|
| 24 | 3 | fvexi | |- B e. _V |
| 25 | 24 | a1i | |- ( ph -> B e. _V ) |
| 26 | 4 23 | rhmf | |- ( O e. ( P RingHom ( R ^s B ) ) -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 27 | 13 26 | syl | |- ( ph -> O : U --> ( Base ` ( R ^s B ) ) ) |
| 28 | 27 16 | ffvelcdmd | |- ( ph -> ( O ` M ) e. ( Base ` ( R ^s B ) ) ) |
| 29 | 27 17 | ffvelcdmd | |- ( ph -> ( O ` N ) e. ( Base ` ( R ^s B ) ) ) |
| 30 | 11 23 5 25 28 29 10 20 | pwsmulrval | |- ( ph -> ( ( O ` M ) ( .r ` ( R ^s B ) ) ( O ` N ) ) = ( ( O ` M ) oF .x. ( O ` N ) ) ) |
| 31 | 22 30 | eqtrd | |- ( ph -> ( O ` ( M .xb N ) ) = ( ( O ` M ) oF .x. ( O ` N ) ) ) |
| 32 | 31 | fveq1d | |- ( ph -> ( ( O ` ( M .xb N ) ) ` Y ) = ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) ) |
| 33 | 11 3 23 5 25 28 | pwselbas | |- ( ph -> ( O ` M ) : B --> B ) |
| 34 | 33 | ffnd | |- ( ph -> ( O ` M ) Fn B ) |
| 35 | 11 3 23 5 25 29 | pwselbas | |- ( ph -> ( O ` N ) : B --> B ) |
| 36 | 35 | ffnd | |- ( ph -> ( O ` N ) Fn B ) |
| 37 | fnfvof | |- ( ( ( ( O ` M ) Fn B /\ ( O ` N ) Fn B ) /\ ( B e. _V /\ Y e. B ) ) -> ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) ) |
|
| 38 | 34 36 25 6 37 | syl22anc | |- ( ph -> ( ( ( O ` M ) oF .x. ( O ` N ) ) ` Y ) = ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) ) |
| 39 | 7 | simprd | |- ( ph -> ( ( O ` M ) ` Y ) = V ) |
| 40 | 8 | simprd | |- ( ph -> ( ( O ` N ) ` Y ) = W ) |
| 41 | 39 40 | oveq12d | |- ( ph -> ( ( ( O ` M ) ` Y ) .x. ( ( O ` N ) ` Y ) ) = ( V .x. W ) ) |
| 42 | 32 38 41 | 3eqtrd | |- ( ph -> ( ( O ` ( M .xb N ) ) ` Y ) = ( V .x. W ) ) |
| 43 | 19 42 | jca | |- ( ph -> ( ( M .xb N ) e. U /\ ( ( O ` ( M .xb N ) ) ` Y ) = ( V .x. W ) ) ) |