This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsmulg.y | |- Y = ( R ^s I ) |
|
| pwsmulg.b | |- B = ( Base ` Y ) |
||
| pwsmulg.s | |- .xb = ( .g ` Y ) |
||
| pwsmulg.t | |- .x. = ( .g ` R ) |
||
| Assertion | pwsmulg | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsmulg.y | |- Y = ( R ^s I ) |
|
| 2 | pwsmulg.b | |- B = ( Base ` Y ) |
|
| 3 | pwsmulg.s | |- .xb = ( .g ` Y ) |
|
| 4 | pwsmulg.t | |- .x. = ( .g ` R ) |
|
| 5 | simpll | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> R e. Mnd ) |
|
| 6 | simplr | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> I e. V ) |
|
| 7 | simpr3 | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> A e. I ) |
|
| 8 | 1 2 | pwspjmhm | |- ( ( R e. Mnd /\ I e. V /\ A e. I ) -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) ) |
| 9 | 5 6 7 8 | syl3anc | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) ) |
| 10 | simpr1 | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> N e. NN0 ) |
|
| 11 | simpr2 | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> X e. B ) |
|
| 12 | 2 3 4 | mhmmulg | |- ( ( ( x e. B |-> ( x ` A ) ) e. ( Y MndHom R ) /\ N e. NN0 /\ X e. B ) -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) ) |
| 14 | 1 | pwsmnd | |- ( ( R e. Mnd /\ I e. V ) -> Y e. Mnd ) |
| 15 | 14 | adantr | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> Y e. Mnd ) |
| 16 | 2 3 15 10 11 | mulgnn0cld | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( N .xb X ) e. B ) |
| 17 | fveq1 | |- ( x = ( N .xb X ) -> ( x ` A ) = ( ( N .xb X ) ` A ) ) |
|
| 18 | eqid | |- ( x e. B |-> ( x ` A ) ) = ( x e. B |-> ( x ` A ) ) |
|
| 19 | fvex | |- ( ( N .xb X ) ` A ) e. _V |
|
| 20 | 17 18 19 | fvmpt | |- ( ( N .xb X ) e. B -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
| 21 | 16 20 | syl | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( ( x e. B |-> ( x ` A ) ) ` ( N .xb X ) ) = ( ( N .xb X ) ` A ) ) |
| 22 | fveq1 | |- ( x = X -> ( x ` A ) = ( X ` A ) ) |
|
| 23 | fvex | |- ( X ` A ) e. _V |
|
| 24 | 22 18 23 | fvmpt | |- ( X e. B -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
| 25 | 11 24 | syl | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( ( x e. B |-> ( x ` A ) ) ` X ) = ( X ` A ) ) |
| 26 | 25 | oveq2d | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( N .x. ( ( x e. B |-> ( x ` A ) ) ` X ) ) = ( N .x. ( X ` A ) ) ) |
| 27 | 13 21 26 | 3eqtr3d | |- ( ( ( R e. Mnd /\ I e. V ) /\ ( N e. NN0 /\ X e. B /\ A e. I ) ) -> ( ( N .xb X ) ` A ) = ( N .x. ( X ` A ) ) ) |