This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation builder for an exponential. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | ||
| evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | ||
| evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | ||
| evl1expd.f | ⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | ||
| evl1expd.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | ||
| evl1expd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | evl1expd | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.q | ⊢ 𝑂 = ( eval1 ‘ 𝑅 ) | |
| 2 | evl1addd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 3 | evl1addd.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 4 | evl1addd.u | ⊢ 𝑈 = ( Base ‘ 𝑃 ) | |
| 5 | evl1addd.1 | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 6 | evl1addd.2 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | evl1addd.3 | ⊢ ( 𝜑 → ( 𝑀 ∈ 𝑈 ∧ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) ) | |
| 8 | evl1expd.f | ⊢ ∙ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 9 | evl1expd.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 10 | evl1expd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 12 | 11 4 | mgpbas | ⊢ 𝑈 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 13 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 15 | 2 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 16 | 11 | ringmgp | ⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 17 | 14 15 16 | 3syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 18 | 7 | simpld | ⊢ ( 𝜑 → 𝑀 ∈ 𝑈 ) |
| 19 | 12 8 17 10 18 | mulgnn0cld | ⊢ ( 𝜑 → ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ) |
| 20 | eqid | ⊢ ( 𝑅 ↑s 𝐵 ) = ( 𝑅 ↑s 𝐵 ) | |
| 21 | 1 2 20 3 | evl1rhm | ⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 22 | 5 21 | syl | ⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) ) |
| 23 | eqid | ⊢ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) = ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 24 | 11 23 | rhmmhm | ⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) |
| 26 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) | |
| 27 | 12 8 26 | mhmmulg | ⊢ ( ( 𝑂 ∈ ( ( mulGrp ‘ 𝑃 ) MndHom ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ 𝑈 ) → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
| 28 | 25 10 18 27 | syl3anc | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
| 29 | eqid | ⊢ ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) | |
| 30 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ) | |
| 31 | 3 | fvexi | ⊢ 𝐵 ∈ V |
| 32 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 33 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) | |
| 34 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) | |
| 35 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) | |
| 36 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) | |
| 37 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) | |
| 38 | 20 32 33 23 34 35 36 37 | pwsmgp | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝐵 ∈ V ) → ( ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
| 39 | 5 31 38 | sylancl | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
| 40 | 39 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 41 | ssv | ⊢ ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ⊆ V | |
| 42 | 41 | a1i | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ⊆ V ) |
| 43 | ovexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) 𝑦 ) ∈ V ) | |
| 44 | 39 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 45 | 44 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) 𝑦 ) ) |
| 46 | 26 29 30 40 42 43 45 | mulgpropd | ⊢ ( 𝜑 → ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) = ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 47 | 46 | oveqd | ⊢ ( 𝜑 → ( 𝑁 ( .g ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) ( 𝑂 ‘ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
| 48 | 28 47 | eqtrd | ⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) = ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ) |
| 49 | 48 | fveq1d | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) ) |
| 50 | 32 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 51 | 14 50 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 52 | 31 | a1i | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 53 | eqid | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) | |
| 54 | 4 53 | rhmf | ⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐵 ) ) → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 55 | 22 54 | syl | ⊢ ( 𝜑 → 𝑂 : 𝑈 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 56 | 55 18 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 57 | 23 53 | mgpbas | ⊢ ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ↑s 𝐵 ) ) ) |
| 58 | 57 40 | eqtrid | ⊢ ( 𝜑 → ( Base ‘ ( 𝑅 ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 59 | 56 58 | eleqtrd | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
| 60 | 33 35 29 9 | pwsmulg | ⊢ ( ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐵 ∈ V ) ∧ ( 𝑁 ∈ ℕ0 ∧ ( 𝑂 ‘ 𝑀 ) ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 61 | 51 52 10 59 6 60 | syl23anc | ⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) ) |
| 62 | 7 | simprd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) = 𝑉 ) |
| 63 | 62 | oveq2d | ⊢ ( 𝜑 → ( 𝑁 ↑ ( ( 𝑂 ‘ 𝑀 ) ‘ 𝑌 ) ) = ( 𝑁 ↑ 𝑉 ) ) |
| 64 | 61 63 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 ( .g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ( 𝑂 ‘ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) |
| 65 | 49 64 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) |
| 66 | 19 65 | jca | ⊢ ( 𝜑 → ( ( 𝑁 ∙ 𝑀 ) ∈ 𝑈 ∧ ( ( 𝑂 ‘ ( 𝑁 ∙ 𝑀 ) ) ‘ 𝑌 ) = ( 𝑁 ↑ 𝑉 ) ) ) |