This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Polynomial evaluation is a homomorphism (into the product ring). (Contributed by Mario Carneiro, 12-Jun-2015) (Proof shortened by AV, 13-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evl1rhm.q | |- O = ( eval1 ` R ) |
|
| evl1rhm.w | |- P = ( Poly1 ` R ) |
||
| evl1rhm.t | |- T = ( R ^s B ) |
||
| evl1rhm.b | |- B = ( Base ` R ) |
||
| Assertion | evl1rhm | |- ( R e. CRing -> O e. ( P RingHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1rhm.q | |- O = ( eval1 ` R ) |
|
| 2 | evl1rhm.w | |- P = ( Poly1 ` R ) |
|
| 3 | evl1rhm.t | |- T = ( R ^s B ) |
|
| 4 | evl1rhm.b | |- B = ( Base ` R ) |
|
| 5 | eqid | |- ( 1o eval R ) = ( 1o eval R ) |
|
| 6 | 1 5 4 | evl1fval | |- O = ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
| 7 | eqid | |- ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) = ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) |
|
| 8 | 4 3 7 | evls1rhmlem | |- ( R e. CRing -> ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( R ^s ( B ^m 1o ) ) RingHom T ) ) |
| 9 | 1on | |- 1o e. On |
|
| 10 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
| 11 | eqid | |- ( R ^s ( B ^m 1o ) ) = ( R ^s ( B ^m 1o ) ) |
|
| 12 | 5 4 10 11 | evlrhm | |- ( ( 1o e. On /\ R e. CRing ) -> ( 1o eval R ) e. ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) ) |
| 13 | 9 12 | mpan | |- ( R e. CRing -> ( 1o eval R ) e. ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) ) |
| 14 | eqidd | |- ( R e. CRing -> ( Base ` P ) = ( Base ` P ) ) |
|
| 15 | eqidd | |- ( R e. CRing -> ( Base ` ( R ^s ( B ^m 1o ) ) ) = ( Base ` ( R ^s ( B ^m 1o ) ) ) ) |
|
| 16 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 17 | 2 16 | ply1bas | |- ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) |
| 18 | 17 | a1i | |- ( R e. CRing -> ( Base ` P ) = ( Base ` ( 1o mPoly R ) ) ) |
| 19 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 20 | 2 10 19 | ply1plusg | |- ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) |
| 21 | 20 | a1i | |- ( R e. CRing -> ( +g ` P ) = ( +g ` ( 1o mPoly R ) ) ) |
| 22 | 21 | oveqdr | |- ( ( R e. CRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` P ) y ) = ( x ( +g ` ( 1o mPoly R ) ) y ) ) |
| 23 | eqidd | |- ( ( R e. CRing /\ ( x e. ( Base ` ( R ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( R ^s ( B ^m 1o ) ) ) ) ) -> ( x ( +g ` ( R ^s ( B ^m 1o ) ) ) y ) = ( x ( +g ` ( R ^s ( B ^m 1o ) ) ) y ) ) |
|
| 24 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 25 | 2 10 24 | ply1mulr | |- ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) |
| 26 | 25 | a1i | |- ( R e. CRing -> ( .r ` P ) = ( .r ` ( 1o mPoly R ) ) ) |
| 27 | 26 | oveqdr | |- ( ( R e. CRing /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` P ) y ) = ( x ( .r ` ( 1o mPoly R ) ) y ) ) |
| 28 | eqidd | |- ( ( R e. CRing /\ ( x e. ( Base ` ( R ^s ( B ^m 1o ) ) ) /\ y e. ( Base ` ( R ^s ( B ^m 1o ) ) ) ) ) -> ( x ( .r ` ( R ^s ( B ^m 1o ) ) ) y ) = ( x ( .r ` ( R ^s ( B ^m 1o ) ) ) y ) ) |
|
| 29 | 14 15 18 15 22 23 27 28 | rhmpropd | |- ( R e. CRing -> ( P RingHom ( R ^s ( B ^m 1o ) ) ) = ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) ) |
| 30 | 13 29 | eleqtrrd | |- ( R e. CRing -> ( 1o eval R ) e. ( P RingHom ( R ^s ( B ^m 1o ) ) ) ) |
| 31 | rhmco | |- ( ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) e. ( ( R ^s ( B ^m 1o ) ) RingHom T ) /\ ( 1o eval R ) e. ( P RingHom ( R ^s ( B ^m 1o ) ) ) ) -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) e. ( P RingHom T ) ) |
|
| 32 | 8 30 31 | syl2anc | |- ( R e. CRing -> ( ( x e. ( B ^m ( B ^m 1o ) ) |-> ( x o. ( y e. B |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) e. ( P RingHom T ) ) |
| 33 | 6 32 | eqeltrid | |- ( R e. CRing -> O e. ( P RingHom T ) ) |