This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Constants are polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pf1const.b | |- B = ( Base ` R ) |
|
| pf1const.q | |- Q = ran ( eval1 ` R ) |
||
| Assertion | pf1const | |- ( ( R e. CRing /\ X e. B ) -> ( B X. { X } ) e. Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pf1const.b | |- B = ( Base ` R ) |
|
| 2 | pf1const.q | |- Q = ran ( eval1 ` R ) |
|
| 3 | eqid | |- ( eval1 ` R ) = ( eval1 ` R ) |
|
| 4 | eqid | |- ( Poly1 ` R ) = ( Poly1 ` R ) |
|
| 5 | eqid | |- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
|
| 6 | 3 4 1 5 | evl1sca | |- ( ( R e. CRing /\ X e. B ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) = ( B X. { X } ) ) |
| 7 | eqid | |- ( R ^s B ) = ( R ^s B ) |
|
| 8 | 3 4 7 1 | evl1rhm | |- ( R e. CRing -> ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) ) |
| 9 | 8 | adantr | |- ( ( R e. CRing /\ X e. B ) -> ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) ) |
| 10 | eqid | |- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
|
| 11 | eqid | |- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
|
| 12 | 10 11 | rhmf | |- ( ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) -> ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) ) |
| 13 | ffn | |- ( ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) ) |
|
| 14 | 9 12 13 | 3syl | |- ( ( R e. CRing /\ X e. B ) -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) ) |
| 15 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 16 | 15 | adantr | |- ( ( R e. CRing /\ X e. B ) -> R e. Ring ) |
| 17 | 4 5 1 10 | ply1sclf | |- ( R e. Ring -> ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) ) |
| 18 | 16 17 | syl | |- ( ( R e. CRing /\ X e. B ) -> ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) ) |
| 19 | ffvelcdm | |- ( ( ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) /\ X e. B ) -> ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) |
|
| 20 | 18 19 | sylancom | |- ( ( R e. CRing /\ X e. B ) -> ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) |
| 21 | fnfvelrn | |- ( ( ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) /\ ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) e. ran ( eval1 ` R ) ) |
|
| 22 | 14 20 21 | syl2anc | |- ( ( R e. CRing /\ X e. B ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) e. ran ( eval1 ` R ) ) |
| 23 | 6 22 | eqeltrrd | |- ( ( R e. CRing /\ X e. B ) -> ( B X. { X } ) e. ran ( eval1 ` R ) ) |
| 24 | 23 2 | eleqtrrdi | |- ( ( R e. CRing /\ X e. B ) -> ( B X. { X } ) e. Q ) |