This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppcsect.b | |- B = ( Base ` C ) |
|
| oppcsect.o | |- O = ( oppCat ` C ) |
||
| oppcsect.c | |- ( ph -> C e. Cat ) |
||
| oppcsect.x | |- ( ph -> X e. B ) |
||
| oppcsect.y | |- ( ph -> Y e. B ) |
||
| oppcinv.s | |- I = ( Inv ` C ) |
||
| oppcinv.t | |- J = ( Inv ` O ) |
||
| Assertion | oppcinv | |- ( ph -> ( X J Y ) = ( Y I X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppcsect.b | |- B = ( Base ` C ) |
|
| 2 | oppcsect.o | |- O = ( oppCat ` C ) |
|
| 3 | oppcsect.c | |- ( ph -> C e. Cat ) |
|
| 4 | oppcsect.x | |- ( ph -> X e. B ) |
|
| 5 | oppcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | oppcinv.s | |- I = ( Inv ` C ) |
|
| 7 | oppcinv.t | |- J = ( Inv ` O ) |
|
| 8 | incom | |- ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) = ( `' ( Y ( Sect ` O ) X ) i^i ( X ( Sect ` O ) Y ) ) |
|
| 9 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 10 | eqid | |- ( Sect ` O ) = ( Sect ` O ) |
|
| 11 | 1 2 3 5 4 9 10 | oppcsect2 | |- ( ph -> ( Y ( Sect ` O ) X ) = `' ( Y ( Sect ` C ) X ) ) |
| 12 | 11 | cnveqd | |- ( ph -> `' ( Y ( Sect ` O ) X ) = `' `' ( Y ( Sect ` C ) X ) ) |
| 13 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 14 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 15 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 16 | 1 13 14 15 9 3 5 4 | sectss | |- ( ph -> ( Y ( Sect ` C ) X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) ) |
| 17 | relxp | |- Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) |
|
| 18 | relss | |- ( ( Y ( Sect ` C ) X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y ( Sect ` C ) X ) ) ) |
|
| 19 | 16 17 18 | mpisyl | |- ( ph -> Rel ( Y ( Sect ` C ) X ) ) |
| 20 | dfrel2 | |- ( Rel ( Y ( Sect ` C ) X ) <-> `' `' ( Y ( Sect ` C ) X ) = ( Y ( Sect ` C ) X ) ) |
|
| 21 | 19 20 | sylib | |- ( ph -> `' `' ( Y ( Sect ` C ) X ) = ( Y ( Sect ` C ) X ) ) |
| 22 | 12 21 | eqtrd | |- ( ph -> `' ( Y ( Sect ` O ) X ) = ( Y ( Sect ` C ) X ) ) |
| 23 | 1 2 3 4 5 9 10 | oppcsect2 | |- ( ph -> ( X ( Sect ` O ) Y ) = `' ( X ( Sect ` C ) Y ) ) |
| 24 | 22 23 | ineq12d | |- ( ph -> ( `' ( Y ( Sect ` O ) X ) i^i ( X ( Sect ` O ) Y ) ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
| 25 | 8 24 | eqtrid | |- ( ph -> ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
| 26 | 2 1 | oppcbas | |- B = ( Base ` O ) |
| 27 | 2 | oppccat | |- ( C e. Cat -> O e. Cat ) |
| 28 | 3 27 | syl | |- ( ph -> O e. Cat ) |
| 29 | 26 7 28 4 5 10 | invfval | |- ( ph -> ( X J Y ) = ( ( X ( Sect ` O ) Y ) i^i `' ( Y ( Sect ` O ) X ) ) ) |
| 30 | 1 6 3 5 4 9 | invfval | |- ( ph -> ( Y I X ) = ( ( Y ( Sect ` C ) X ) i^i `' ( X ( Sect ` C ) Y ) ) ) |
| 31 | 25 29 30 | 3eqtr4d | |- ( ph -> ( X J Y ) = ( Y I X ) ) |